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Abstract: What is the appropriate number of past observations to use
in forecasting univariate linear processes? A non-parametric statistic useful
for sample size selection is proposed involving the data's average information
content (AIC). It is shown that the asymptotic predictability of a process is
increasing in its AIC. Monte Carlo simulations of stationary pdf's indicate
that AIC increases with sample size, suggesting that "more is better", while
for stock market returns over a large number of sample sizes the AIC and
mean squared forecast error are signi¯cantly negatively correlated.
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1 Introduction

What is the optimal number of past observations to use in order to max-
imize the forecast accuracy of univariate linear models? Applied research
often proceeds on the implicit assumption that more in-sample observations
are better.2 This is justi¯ed if the data's probability density function (pdf)
is Gaussian, or more generally if OLS is consistent. The question of optimal
sample size is related to that of the appropriate out-of-sample separation
point for assessing the performance of competing forecasting models. In that
respect, strict stationarity of a data vector implies independence from initial
conditions. However, a non-Gaussian but linear|i.e. satisfying the Wold
representation|data generating process (dgp) only satis¯es weak station-
arity, which is necessary but not su±cient for strict stationarity (Hamilton
(1994)). Therefore, sample size matters. In the case of extreme events such
as stock market crashes, the decision to include the relevant observation in
the sample can signi¯cant a®ect a forecasting model's out-of-sample perfor-
mance.

1City University Business School, Frobisher Crescent, Barbican Centre, London EC2Y
8HB, U.K.

2See, for example, Granger and Newbold (1986).
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This paper proposes a sample's average information content (AIC ) as
an information-theoretic predictability measure. The sample AIC is de¯ned
as the sample entropy normalized by its alphabet length. In turn, non-
parametric predictability is de¯ned as the mutual information between the
random variable to be forecast and the ensemble of past observations, nor-
malized by the alphabet length underlying the sample's empirical probability
distribution. The main results are as follows. First, asymptotic predictabil-
ity is shown to be increasing in the AIC and decreasing in the entropy rate of
the dgp. Second, the general relation between forecast error probability and
AIC is non-monotonic. Empirically, we examine the behavior of the AIC for
simulated data from known pdf's and show that it is increasing in sample
size, thus justifying using all available data. Then, using time series of daily
returns for the Dow Jones and Nikkei stock market averages, we show that
AIC is non-monotonic in the sample size. Estimating linear autoregressive
models and comparing the evolution of the AIC against that of mean squared
forecast error (MSE) for changing sample size suggests that AIC and MSE
can be signi¯cantly negatively correlated.
In Section 2 the information-theoretic concepts of entropy and predictabil-

ity are introduced and used to obtain the average information content of a
dataset. In Section 3 the implications of the theoretical properties are ex-
plored for simulated and actual data. Section 4 concludes the paper.

2 Information theory

2.1 De¯nitions

An n{vector of observations fxt; xt¡1; :::; xt¡n+1g from discrete random vari-
able X is denoted xn. If the data generating process (dgp) ofX is strictly sta-
tionary and ergodic, the statistics of xn (do not ) depend on n (t). The sam-
ple entropy of X is Hk

n(X) = ¡ Pk
i=1 pi log pi, where fpigki=1 are the empir-

ical probabilities of observations partitioned into equally-spaced percentiles
i = 1; :::; k. The log is to base 2, so the entropy units are information bits.
The percentile ensemble is de¯ned as the alphabet of the dgp. Its length k
de¯nes the partition: a ¯ner (coarser) partition amounts to a bigger (smaller)
alphabet. For discrete random variables, the value of maximum entropy oc-
curs for the uniform probability density function (pdf) where pi = 1=k for
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all i: maxHk
n(X) = log k.

3 In "normal" circumstances the alphabet length
is invariant to the sample size. However, an "extreme" marginal observation
added to the sample may necessitate a marginal increase in alphabet length
from k to k + 1.
The joint and conditional entropies of random variables fX1;X2; :::; Xng

with joint pdf p(x1; :::; xn) are respectively:

Hk
n(X1; :::; Xn) = ¡

X

x1

X

x2

:::
X

xn

p(x1; :::; xn) log p(x1; :::; xn) (1)

Hk
n(Xn j Xn¡1) =

X

x1

X

x2

:::
X

xn

p(xn j xn¡1) log p(xn j xn¡1) , (2)

where p(xn j xn¡1) is the conditional pdf of Xn given past observations
Xn¡1 fx1; :::; xn¡1g. In general, the mutual information I(X; Y ) of random
variables X and Y is the relevant information in one variable for predicting
the other:

I(X; Y ) = H(X)¡H(X j Y ) (3)

= H(X) +H(Y )¡H(X; Y ) ,

where X is the (unobservable) input forecast using a noisy observable
channel output (signal) Y . Mutual information is symmetric and non-negative.
If X and Y are independent then H(X j Y ) = H(X), so I(X; Y ) = 0 and
Y is useless in predicting X, while if X is a deterministic function of Y then
H(X j Y ) = 0 and mutual information is maximized.4
The univariate non-parametric predictability P kn (Xn; X

n¡1) of random
variable Xn as a function of X

n¡1 is mutual information normalized by the
maximum entropy of a discrete dgp with a k{alphabet:

P kn (Xn; X
n¡1) =

Hk
n(Xn)¡Hk

n(Xn j Xn¡1)

log k
(4)

Normalization implies that P kn (Xn) is bounded between 0 and 1.5

3See Applebaum (1996) and Golan, Judge and Miller (1996).
4If X = xt+j and Y = xt then I(xt+j; xt) is the information about xt+j contained in

xt. As j ! 0 then mutual information reduces to the entropy.
5Fraser (1989) and Palus (1993) de¯ne the numerator of the predictability statistic to

be the (non-linear) redundancy measure.
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2.2 Asymptotic predictability and forecast error

The entropy rate of a random variable sequence fXigni=1 is de¯ned asHk(n) =
limn!1

1
n
Hk
n(X1; :::;Xn). Thus H

k(n) is the limit of the average joint en-
tropy per observation. Clearly, if the fXig sequence is iid then Hk(n) =
limn!1 nHk

n(Xn)=n = Hk
n(Xn). Khinchin (1957) shows the existence of

Hk(n) for strictly stationary processes. Moreover, for strictly stationary
ergodic processes conditional entropy converges to the entropy rate:6

lim
n!1H

k
n(Xn j Xn¡1) = Hk(n) (5)

Taking limits and substituting (5) in (4) yields:

lim
n!1P

k
n (Xn; X

n¡1) =
1

log k
[ lim
n!1(H

k
n(Xn))¡Hk(n)] (6)

The second term in (6) converges to the entropy rate, implying that
asymptotic predictability is greatest when limn!1Hk

n(Xn)= log k is maxi-
mized, while it is zero for an iid sequence. We de¯ne the resulting ¯nite-
sample statistic as the average information content (AIC ) of a dataset of
sample size n and alphabet length k:

AICkn =
Hk
n(Xn)

log k
(7)

We turn to examine the relation between AIC and univariate forecast
error. Let g(Xn¡1) = dXn be a (linear/non-linear) forecast of Xn. The error
probability for sample size n can be written E(n) = E(dXn 6= Xn): There is no
one-to-one relationship between predictability and forecast error probability,
but a tight lower bound relating predictability and error probability is given
by Fano's inequality.7 This is given by:

E(n) ¸ Hk
n(Xn j X1; :::; Xn¡1)¡ 1

log k
(8)

The error probability is low only if the conditional entropyHk
n(Xn j Xn¡1)

is small. Taking limits and substituting the entropy rate from equation (5)
yields limn!1 E(n) ¸ (Hk(n)¡1)= log k. Thus, the lower bound of the error

6For the proof see Cover and Thomas (1991).
7If Pe(n) = 0 then Hk

n(Xn j Xn¡1) = 0. A tight upper bound for error probability has
also been established by Feder and Merhav (1994).
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probability increases in the entropy rate. We know that for iid processes,
which are completely unpredictable, this expression becomes:

lim
n!1E(n) ¸ Hk

n(Xn)¡ 1
log k

(9)

Asymptotic error probability is increasing in the AIC. Therefore, for iid
processes the relation between general loss function evaluation criteria|such
as mean squared error|proxying for error probability and the AIC is mono-
tonic. However, if a process is not iid then the relationship between asymp-
totic error probability, predictability and the AIC is likely non-linear.

3 Average information content and sample
size

3.1 Monte Carlo simulations

We ¯rst illustrate the behavior of AICkn as sample size changes from n = 1
to 500 using simulated data from the Gaussian (0; 1), uniform [0; 1] and
gamma (1; 1) distributions. Each simulated n{vector is partitioned using a
discrete alphabet of ¯xed length k: an n{vector thus yields kn possible output
signals. Given the alphabet length, the density function for a given sample
size corresponds to the empirical frequency distribution. Figure 1 shows
that given alphabet length k = 100, AICkn increases with sample size.

8 This
property is robust to alternative distributions and alphabet length. Also note
that, overall, the greatest asymptotic AIC occurs for the uniform pdf. This
follows from the maximum entropy principle because the simulated data,
although drawn from continuous pdf's, have been discretized. Therefore,
n¤ = argmaxnAICkn coincides with the maximum sample size, implying that
predictability increases in the number of observations. Intuitively, "more is
better" because the underlying (true) dgp is strictly stationary. We now turn
to analyze the behavior of average information content with sample size and
its relation to forecast accuracy for actual ¯nancial data.

8The increase is not monotonic because there is only one sample: if many random
samples of length n were generated then AICk

n would be smoothly increasing in n.
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3.2 Illustration with stock market returns

The time series used are daily returns on the Dow Jones Industrial (DJIA)
and the Nikkei (NIK) stock market averages over the period 1=1=1973{
6=4=1998, a total 6; 591 observations. The data is (weakly) stationary over
the sample period. The average information content and forecast accuracy
statistics are both in°uenced by the choice of cut-o® observation and conse-
quent size of the in-sample data vector. In addition, the average information
content is a®ected by the alphabet length k. In turn, the forecast accuracy
measure is also in°uenced by the speci¯cation of forecasting model, the infor-
mation criterion for ARMA (parametric) lag order selection, the loss function
used to evaluate forecast accuracy and the length of the forecast horizon.
We discuss each factor in turn. First, the empirical distribution is used to

compute the time series average information content AICkn, as in Abarbanel
(1996). As discussed in Section 2, the subscript n denotes the changing
sample size while the superscript k denotes the ¯xed alphabet length. For
both time series, the cut-o® obervation of the in-sample data is ¯xed at 6; 500,
so the length of the out-of-sample period is ¯xed at 91. The in-sample size is
increased incrementally from nMIN to nMAX observations by moving the ¯rst
in-sample observation backward one day at a time. For illustration purposes,
for the Dow Jones nMIN = 400 and nMAX = 700, or 300 rolling sample sizes,
while for the Nikkei nMIN = 400 and nMAX = 4; 400, or 4; 000 rolling sample
sizes. The data is partitioned in k = 100 equally-spaced percentiles.9 Second,
for the same sample size, parametric forecast error is evaluated according to
the mean-squared error (MSE) criterion. The forecast horizon is ¯xed at
j = 10 days ahead and the forecasts are dynamic. The MSEjn statistic is
computed using a linear AR speci¯cation, where the lag order is determined
is determined using the modi¯ed Schwartz information criterion of Neumaier
and Schneider (1997). The AR parameters, including the order speci¯cation,
are reestimated at each sample size increment.
For each stock market average, the left panels in Figure 2 plot the evo-

lution of the AICkn and MSE
j
n statistics on separate scales with changing

sample size n. The plotted values are conditional upon the alphabet length,
forecasting model, AR order information criterion and forecast horizon. Un-
like the simulated datasets for the known pdf's, AIC is clearly non-monotonic

9Following Golan, Judge and Miller (1996), the alphabet length k must be less than the
sample size n in order for the recovery of the probability vector fpigk

i=1 to be well-de¯ned.
This constraint is unlikely to be binding in practice.
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in sample size: average information content is very sensitive to the arrival of
"extreme" datapoints (outliers). This suggests that maximizing AIC may
contribute to lower mean squared error. The correlation coe±cients of the
two statistics are b½DJIA(AIC100300 ;MSE

10
300) = ¡0:495 for the Dow Jones In-

dustrial and b½NIK(AIC1004000;MSE
10
4000) = ¡0:648 for the Nikkei average. The

signi¯cance of these values is examined by bootstrapping the underlying
statistics. The right panels in Figure 2 show the empirical distribution of
each bootstrap correlation statistic for 1; 000 bootstrap replications of the
AICkn and MSE

j
n vectors. In each case, the bootstrap histograms strongly

suggest that the true correlation coe±cient are signi¯cantly negative. Ro-
bustness of the results to alternative datasets and to the factors mentioned
above is the subject of current research.

4 Conclusion

This paper analyzed the problem of sample size selection in an information-
theoretic framework. Theoretically, it was shown that a higher average in-
formation content improves predictability, while the link between the AIC
and error probability was less clear. Simulations of known stationary pdf's
suggested that AIC increases with sample size. An empirical application to
¯nancial data indicated that AIC and mean square forecast error are nega-
tively correlated, suggesting that AIC can be used to improve the forecast
accuracy of linear parametric models by appropriate selection of in-sample
size. Extensions to this framework include relating parametric and para-
metric predictability using Fisher information, and analyzing multivariate
predictability using the mutual information between di®erent datasets.
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