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A Summary of the three-country model

In this section we present the model in a way that lends itself for recursive solution,

as implemented in the Fortran codes (see core_model.f90). In particular, the solution

strategy consists of guessing B’s and C’s prices in country A’s consumption units, recur-

sively solving for the other variables and thus verifying the guess. Hence we guess pB,t

and pC,t. Using the aggregate price equations obtain

pA,t =

(
1− (1− νA)

(
ςAp

1−θ
B,t + (1− ςA)p

1−θ
C,t

)
νA

) 1
1−θ

(A.1)

QA,B,t =
(
νBp

1−θ
B,t + (1− νB)

(
ςBp

1−θ
A,t + (1− ςB)p

1−θ
C,t

)) 1
1−θ (A.2)

QA,C,t =
(
νCp

1−θ
C,t + (1− νC)

(
ςCp

1−θ
A,t + (1− ςC)p

1−θ
B,t

)) 1
1−θ (A.3)
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From countries’ demand and resource constraints have

cA,A,t = νA (pA,t)
−θ CA,t (A.4a)

cA,B,t = ςA (1− νA) (pB,t)
−θ CA,t (A.4b)

cA,C,t = (1− ςA) (1− νA) (pC,t)
−θ CA,t (A.4c)

cB,B,t = νB (pB,t)
−θ CB,t (A.5a)

cB,A,t = ςB (1− νB)

(
pA,t

QA,B,t

)−θ

CB,t (A.5b)

cB,C,t = (1− ςB) (1− νB)

(
pC,t

QA,B,t

)−θ

CB,t (A.5c)

cC,C,t = νC (pC,t)
−θ CC,t (A.6a)

cC,A,t = ςC (1− νC)

(
pC,t

QA,C,t

)−θ

CC,t (A.6b)

cC,B,t = (1− ςC) (1− νC)

(
pB,t

QA,C,t

)−θ

CC,t (A.6c)

Using the risk-sharing constants

CB,t = Q
− 1

ρ

A,B,tκA,BCA,t CC,t = Q
− 1

ρ

A,C,tκA,CCA,t. (A.7)

the goods market equilibrium for the three countries are given by

nApA,tYA,t = (pA,t)
1−θ

(
nAνA + nBςB (1− νB)Q

θ− 1
ρ

A,B,tκA,B + nCςC (1− νC)Q
θ− 1

ρ

A,C,tκA,C

)
CA,t

(A.8)

nBpB,tYB,t = (pB,t)
1−θ

(
nBνBQ

θ− 1
ρ

A,B,tκA,B + nAςA (1− νA) + nC (1− ςC) (1− νC)Q
θ− 1

ρ

A,C,tκA,C

)
CA,t

(A.9)

nCpC,tYC,t = (pC,t)
1−θ

(
nCνCQ

θ− 1
ρ

A,C,tκA,C + nA (1− ςA) (1− νA) + nB (1− ςB) (1− νB)Q
θ− 1

ρ

A,B,tκA,B

)
CA,t.

(A.10)

Summing up these three equations gives

CA,t = µA,tYW,t (A.11)
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where

µA,t =

[
nA + nBQ

1− 1
ρ

A,B,tκA,B + nCQ
1− 1

ρ

A,C,tκA,C

]−1

(A.12)

Note that µA,t > 0 can be larger or smaller than 1. Likewise,by applying equations (A.7)

we have

CB,t = µB,tYW,t, and CC,t = µC,tYW,t (A.13)

where per equations (A.7)

µB,t = µA,tκA,BQ
− 1

ρ

A,B,t, and µC,t = µA,tκA,CQ
− 1

ρ

A,C,t. (A.14)

Note also that nAµA + nBµBQA,B,t + nCµCQA,C,t = 1.

Then use the labor supply equations to generate global output, i.e. from

LA,t =

(
C−ρ

A,t

1− α

χ
pA,tDA,t

) 1
φ+α

(A.15)

LB,t =

(
C∗

B,t
−ρ1− α

χ
pB,tQ

−1
A,B,tDB,t

) 1
φ+α

(A.16)

LC,t =

(
C∗

C,t
−ρ1− α

χ
pC,tQ

−1
A,C,tDC,t

) 1
φ+α

(A.17)

Or, using the results so far

nApA,tDA,tL
1−α
A,t = nApA,tDA,t

(
µ−ρ
A

1− α

χ
pA,tDA,t

) (1−α)
φ+α

Y
− ρ(1−α)

φ+α

W,t (A.18)

nBpB,tDB,tL
1−α
B,t = nBpB,tDB,t

(
µ−ρ
B

1− α

χ
pB,tQ

−1
A,B,tDB,t

) (1−α)
φ+α

Y
− ρ(1−α)

φ+α

W,t (A.19)

nCpC,tDC,tL
1−α
C,t = nCpC,tDC,t

(
µ−ρ
C

1− α

χ
pC,tQ

−1
A,C,tDC,t

) (1−α)
φ+α

Y
− ρ(1−α)

φ+α

W,t (A.20)
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Adding them up yields

YW,t =



nApA,tDA,t

(
µ−ρ
A

1− α

χ
pA,tDA,t

) (1−α)
φ+α

+

nBpB,tDB,t

(
µ−ρ
B

1− α

χ
pB,tQ

−1
A,B,tDB,t

) (1−α)
φ+α

+

nCpC,tDC,t

(
µ−ρ
C

1− α

χ
pC,tQ

−1
A,C,tDC,t

) (1−α)
φ+α



φ+α
ρ(1−α)+φ+α

(A.21)

Finally use

nBYB,t = (pB,t)
−θ

(
nBνBQ

θ− 1
ρ

A,B,tκA,B + nAςA (1− νA) + nC (1− ςC) (1− νC)Q
θ− 1

ρ

A,C,tκA,C

)
CA,t

(A.22)

nCYC,t = (pC,t)
−θ

(
nCνCQ

θ− 1
ρ

A,C,tκA,C + nA (1− ςA) (1− νA) + nB (1− ςB) (1− νB)Q
θ− 1

ρ

A,B,tκA,B

)
CA,t

(A.23)

to verify the guess for pB,t and pC,t.

A.1 Financial autarky: three-country model

Under autarky each country must consume in each period all the equivalent value of do-

mestic production, i.e. there is only trade in goods. We solve the equilibrium by guessing

and verifying pB,t and pC,t. We solve using the three price indexes, three autarky re-

source constraints, three labor market clearing conditions and two goods market clearing

condition. Given the guess of pF,t and using aggregate price equations obtain

pA,t =

(
1− (1− νA)

(
ςAp

1−θ
B,t + (1− ςA)pC,t

1−θ
)

νA

) 1
1−θ

(A.24)

QA,B,t =
(
νBp

1−θ
B,t + (1− νB)

(
ςBp

1−θ
A,t + (1− ςB)pC,t

1−θ
)) 1

1−θ (A.25)

QA,C,t =
(
νCp

1−θ
C,t + (1− νC)

(
ςCp

1−θ
A,t + (1− ςC)pB,t

1−θ
)) 1

1−θ (A.26)

We solve for consumption by using the budget constraints, together with the labor market

equilibrium conditions. Consider the labor market equilibrium conditions, raised to the
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power of 1− α and multiplied by TFP and domestic price. This yields

Cj,t = p∗j,tDj,tL
1−α
j,t = Q−1

A,j,tpj,tDj,t

(
C−ρ

j,t

1− α

χ
pj,tQ

−1
A,j,tDj,t

) 1−α
φ+α

(A.27)

and hence

Cj,t =

(
Q−1

A,j,tpj,tDj,t

(
1− α

χ
pj,tQ

−1
A,j,tDj,t

) 1−α
φ+α

) φ+α
(φ+α)+ρ(1−α)

(A.28)

for country j = {A,B,C}. The guesses will be correct if these goods-market equilibrium

conditions are satisfied:

nBYB,t = (pB,t)
−θ (nBνBQ

θ
A,B,tCB,t + nAςA (1− νA)CA,t + nC (1− ςC) (1− νC)Q

θ
A,C,tCC,t

)
(A.29)

nCYC,t = (pC,t)
−θ (nCνCQ

θ
A,C,tCC,t + nA (1− ςA) (1− νA)CA,t + nB (1− ςB) (1− νB)Q

θ
A,B,tCB,t

)
.

(A.30)

B Perturbation Methods

B.1 Series expansion and cumulant-generating function

The characterization of the series expansion in the main text is analogous to that used

in the macro-finance literature by e.g. Backus et al. (2011). In that case they show that

the moment-generating function for a random variable x is (if it exists)

h(ω, x) = E(eωx) (B.1)

then the cumulant-generating function is simply

f(ω, x) = ln h(ω, x) (B.2)
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Then, assuming that h(ω, x) is analytical, we can write its series expansion as

f(ω, x) =
∞∑
j=1

fj(x)
ωj

j!
(B.3)

where fj :=
∂j log f(ω, x)

∂ωj

∣∣∣∣
ω=0

.

B.2 A useful efficient procedure

We detail a practical solution step which might be particularly useful for numerical so-

lutions of DSGE models of any size, e.g. using Dynare (Juillard, 1996).1 We then offer

higher-order accurate solution of the Negishi weights. For this illustration we focus on

the two-country version of the model, wlog.

We illustrate the procedure focusing on Negishi weights, which also happen to

feature differently than the other variables in the model.2 We begin by observing that

the risk-sharing condition can be solved backward to yield:

log ζA,t − log ζB,t + logQA,B,t = log ζA,0 − log ζB,0 + logQA,B,0 := ρ log κA,B. (B.4)

where the subscript 0 indicates the time zero in which the risk-sharing agreement is

entered for the first time.

The initial distribution of wealth under a full set of period-by-period state con-

tingent (Arrow) securities is pinned down by a condition on the initial distribution of

Arrow securities across borders. Take the m − order series-expansion of κA,B around

ω = 0

log κA,B (ω) ≈ κ
(0)
A,B + κ

(1)
A,Bω + . . .+ κ

(m)
A,B

1

m!
ωm (B.5)

1We solve our model using specific code in Wolfram’s Mathematica for which we don’t need to use
this practical suggestion.

2For non-separable preferences or recursive preferences, e.g. à la Bansal and Yaron (2004), a similar
decomposition can be obtained. Details are available from the authors on request.
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where κ
(m)
A,B :=

∂m log κA,B

∂ωm

∣∣∣∣
ω=0

. At each order m, solve for κ(m)
A,B and proceed recursively,

starting from κ
(0)
A,B = κ̄A,B and κ

(1)
A,B = 0 (as certainty equivalence holds at first order).

By way of example, a second order expansion implies that

κ̃A,B := log κA,B(ω)− log κ
(0)
A,B ≈

1

2
κ
(2)
A,B (B.6)

where wlog we set ω = 1.3

Our solution algorithm (whether applied analytically or numerically) proceeds

as follows

1. Expand to the order of interest the system of equations constituting the model;

2. Find the RE solution for all variables as a function of κ̃A,B;

3. Use the appropriate series expansion of budget constraint under the condition

SA,0 = 0 to solve for κ̃A,B.

For higher orders of approximation this algorithm can be used recursively starting from

lower orders to build the solution for higher orders, i.e. to construct a solution for each

of the variables of the model with the same structure as in equation (B.5).

It is worth stressing that this solution technique does not amount to finding

the “risky steady state” à la Coeurdacier et al. (2011). Despite some similarities in

the two methods, our technique is specific to the derivation of κA,B. It relies on the

existence of an explicit condition that can be imposed to solve for κA,B—a given initial

distribution of assets. The intuition is simple. Under complete markets we can solve

the model economy (i.e. find the state-space representation of the endogenous dynamic

variables) conditionally on the initial, time-invariant distribution of assets. Consider the
3The accuracy of the approximation clearly depends on the size of ω. Nevertheless, we can normalize

this to 1 and scale appropriately the standard deviation of the underlying shocks, wlog.
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representation of a DSGE model under a second order perturbation4

AEtX̃
(2)
t+1 +BX̃

(2)
t + CEt

(
X̃

(1)
t+1 ⊗ X̃

(1)
t+1

)
+D

(
X̃

(1)
t ⊗ X̃

(1)
t

)
+ F

(
X̃

(1)
t ⊗ εt

)
+Gκ̃A,B = 0

(B.7)

where Xt is a vector of variables, X̃(i) := X(i)−X(0), εt is an i.i.d. vector of innovations,

A, B, C, D, F , G and H (below) are conformable matrices of coefficients. Importantly,

κA,B does not appear in the coefficient matrices A,B,C,D, F,G which are only reflecting

deterministic steady state information. As argued above, the non-linear terms are of

lower order (here first order). In this example these terms are solved separately from the

system

EtAX̃
(1)
t+1 +BX̃

(1)
t +Hεt = 0. (B.8)

Notably, κ̃(1)
A,B is missing from the first order, as it is zero under certainty equivalence.

Since κ̃
(2)
A,B is time invariant, we can re-write equation (B.7) as

AEtX̌
(2)
t+1 +BX̌

(2)
t + CEt

(
X̃

(1)
t+1 ⊗ X̃

(1)
t+1

)
+D

(
X̃

(1)
t ⊗ X̃

(1)
t

)
+ F

(
X̃

(1)
t ⊗ εt

)
= 0 (B.9)

where X̌
(2)
t = X̃

(2)
t + (A+B)−1 Gκ̃

(2)
A,B. Note that under complete markets the system

(B.9) does not need to include the households budget constraint, which will instead be

used in a second step to solve for κ̃
(2)
A,B.

Summing up, in the class of models where κA,B enters log linearly,5 the solution

procedure consists naturally of two steps: i) solve for allocations and prices using system

(B.9); ii) use the (approximated) budget constraint at time 0 to solve for κ̃
(2)
A,B. These

two steps will then allow to recover X̃
(2)
t . The same procedure holds for any order of

approximation.

To avoid misinterpretations of the algorithm, it is important to stress that there
4To simplify the illustration we assume that the model has at most one period ahead expectations

and that that the system is represented in “companion form” with all lags subsumed in the vector Xt.
5This is the case of not only CRRA preferences, but also Epstein-Zin preferences.
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is only one (standard) perturbation taking place, i.e. along the “risk” loading parameter

ω. The solution of the resulting system of series expansions is recursive with respect to

κA,B at each order of approximation – at least in this class of models. The solution could

as well be obtained all at once (less efficiently). The key is that we go from the original

non-linear model to a system of series expansions of all the “risk-sensitive” variables,

including κA,B.6

B.2.1 Higher-order accurate solution of the Negishi weights

In the simple Lucas’ endowment model discussed in the main text, the risk-sharing con-

stant κA,B,7 defined as κA,B =
CB,t

CA,t

depends recursively on exogenous variables, i.e.

1

n+ (1− n)κA,B

=
E0

∑∞
t=0 δ

t (Dw,t)
−ρ DA,t

E0

∑∞
t=0 δ

t (Dw,t)
−ρ Dw,t

(B.10)

where Dw,t = nADA,t + nBDB,t.

In general, and specifically when there is production, the right-hand-side of

equation (B.10) is endogenous (e.g. the discount factor depends on consumption, and

income depends on production). Therefore, to find the risk sharing constant in this more

general setting we typically need to use some fixed-point algorithm.

We propose a closed-form solution for κA,B based on perturbation methods.

We present a version that is accurate up to second order but that is straightforward to

extend to higher orders. It is important to reiterate that perturbation-based solutions

of κA,B don’t require any ad-hoc deviation from standard perturbation principles.8 Fur-

thermore, the recursivity of the solution that we propose is a natural property of models
6A similar recursivity between dynamic allocations and time-invariant financial allocations emerges

in long-run portfolio decisions, as discussed by Devereux and Sutherland (2011). There, the “zero order”
asymptotic portfolio composition can be solved recursively from the dynamic allocation of the model’s
variables. This is possible since the “zero order” portfolio shares are time-invariant (like our κA,B) and the
dynamics of the model can be defined conditionally on these shares. Like for the portfolio case, no ad-hoc
assumptions or heuristic techniques are needed. The solution emerges from the mechanical application
of series expansion techniques and solution techniques for dynamic rational expectation models.

7The term “constant” refers to time invariance. This coefficient is not invariant to risk.
8The key principle is that to solve at higher orders of accuracy, powers of the variables in the series

expansion must be computed with the solution of a lower order of accuracy Holmes (e.g. 1995).

9



with complete markets. Specifically, while the dynamic equilibrium can be determined

conditionally on arbitrary values for κA,B, the latter can be determined using an equation

that is redundant for the dynamic equilibrium under complete markets, i.e. the law of

motion of Arrow-Debreu securities.

There are possibly various strategies to compute κA,B. For this paper we imple-

ment two. One, computed using Wolfram Mathematica, literally represents the solution

of the endogenous variables as functions of κA,B and then uses these solutions in the law

of motion of Arrow-Debreu securities to solve for κA,B. The other approach is more suited

for numerical solutions of DSGE models, e.g. using Dynare.

We can describe this second approach as follows. The solution is based on the

observation that, up to second order of accuracy, κA,B depends on second order terms,

and in particular on the variance of the exogenous processes (a similar logic applies to

higher orders). We can thus represent the Negishi weights as

log(κA,B) := κ̄A,BEtε
2
κ,t+1 (B.11)

so that

κ̄A,BEtε
2
κ,t+1 = C̃B,t − C̃A,t (B.12)

where κ̄A,B is the unknown parameter we want to solve for, and εκ,t, is a mean-zero iid

auxiliary shock with variance denoted by σ2
κ. This implies that Etε

2
κ,t+1 = σ2

κ. So far we

have thus re-scaled the original kappa by σ2
κ.

The second-order solution of a DSGE model can be written in a second-order

VAR form as (e.g. following Dynare notation)

YA,t = Ayt−1 +But +
1

2
[C (yt−1 ⊗ yt−1) +D (ut ⊗ ut) + 2F (yt−1 ⊗ ut)] +

1

2
GΣ⃗2 (B.13)

where YA,t ∈ Rny is the vector of all the ny variables (endogenous and exogenous excluding

innovations), ut ∈ Rni is the vector of all the ni (iid) innovations, A, B, C, D, F , G are

conformable matrices, and for any column vectors x and z, (x⊗ z) is the vectorized outer
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product of these vectors. Σ2 := Et

(
ut+1u

′
t+1

)
, and ·⃗ is the vectorization operator.9

The key term in equation (B.13) is the last one, which shifts the mean of vari-

ables in proportion to the exogenous risk, captured by the variance matrix Σ2 (also

referred to as the stochastic steady state in the literature). Using regular perturbations

(see e.g. Lombardo and Uhlig, 2018), none of the matrices in (B.13) depends on exogenous

risk. This means that the only place where σκ appears is in Σ2.

The vector YA,t contains the variable measuring Arrow-Debreu securities. As-

sume the latter are in position iAD, and that σκ occupies position jσκ in the vector Σ⃗2.

Then we have that

YA,t[iAD] = A[iAD, :]yt−1 +B[iAD, :]ut +
1

2
[C[iAD, :] (yt−1 ⊗ yt−1)

+D[iAD, :] (ut ⊗ ut) + 2F [iAD, :] (yt−1 ⊗ ut)] +
1

2
G[iAD, :]Σ⃗2 (B.14)

where for a matrix X, X[i, j] denotes the element in row i and column j, and where

X[i, :] denotes the row i of matrix X; for a vector z, z[jσκ ] is the jσκ − th element in z.

In particular, Σ⃗2[jσκ ] = σ2
κ.

Note that if we set κ̄A,B = 1, we can solve for σ2
κ that satisfies some restriction on

YA,t[iAD]. In particular we know that under complete markets it must be that y0[iAD] = 0

(Ljungqvist and Sargent, 2012). One way to implement this condition is to assume that

at time 0 and -1 the economy was at the stochastic steady state, i.e. all elements of

equation (B.14) are zero except the last one, i.e.10

y0[iAD] = 0 =
1

2
G[iAD, :]Σ⃗2 (B.15)

9To date, Dynare returns only the product GΣ⃗2 in the variable “oo_.dr.ghs2”. In order to implement
our algorithm this product must be factorized in the two components. This can be easily done by
modifying Dynare function dyn_second_order_solver.m at about line 173, by adding a new variable
e.g. dr.G=LHS\(-RHS);, where LHS and RHS are variables defined in the function.

10Equally easily implementable is any other condition, e.g. Ey0[iAD] = 0.
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Then we can solve for σ2
κ as

σ2
κ = −

G[iAD, j
⊥
σκ
]Σ⃗2[j⊥σκ

]

G[iAD, jσκ ]
(B.16)

where j⊥σκ
denotes all the elements excluding jσκ . Now we simply need to swap values,

i.e. κ̄A,B ← σ2
κ σ2

κ ← 1. With this assignment of values, κA,B is the second-order accurate

risk-sharing constant that implements complete markets.

Our proposed algorithm, correctly implements complete markets up to second

order accuracy. It should be noted also that our approach does not affect the first-order

solution. This solution correctly describes growth rates of variables, since the risk-sharing

constant is invariant to time (Ljungqvist and Sargent, 2012).

This approach is reminiscent of the solution algorithm proposed by Devereux

and Sutherland (2011) (DS) to solve for portfolio shares up to second order. DS introduce

an auxiliary iid shock in the budget constraint of investors as a placeholder for portfolio

shares. By knowing the position of this auxiliary shock DS can then use simple linear

algebra to derive the shares. Although we solve a different problem, our algorithm shares

with DS the idea of using auxiliary iid shocks as placeholders for parameters that would

otherwise drop out of the perturbed solution.

C Analytical results

In the text, we have referred to a• and b• as complex convolutions of deep parameters (ρ,

θ, δ and nA). Below we show the analytical expression for a• and b• for the special case
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of nA = 1
2
:

aκ,2 =
1

4(1− δ)
(C.1)

aκ,22 =
ρ

32(1− δ)
(C.2)

aκ,3 =
1

12(1− δ)
(C.3)

aκ,4 =
1

48(1− δ)
(C.4)

aκ,Γ =
δ(ρ− 1)(θ(ρ− 2)− 1)

32(1− δ)θ
(C.5)

aγ,A =
δ(2θ − 2θ2 + ρ− 4θρ+ 3θ2ρ)

8(1− δ)θ2
(C.6)

aγ,B =
β(ρ− θ2 − 2θ)

8(1− δ)θ2
(C.7)

aϕ,A =
δ(θ − 1)(ρ− 1)(−2− ρ+ θ(1 + 5ρ)− θ2(7ρ− 4))

48(1− δ)θ3
(C.8)

aϕ,B =
δ(θ − 1)(ρ− 1)(−2− ρ− θ(−1 + ρ)− ρ− θ2(ρ− 4))

48(1− δ)θ3
(C.9)

aη,A =
δ(θ − 1)

384(1− δ)θ4
(ρ(−6 + 3ρ+ ρ2)− θ2(−4 + 27ρ2 − 17ρ3)− (C.10)

θ(8− 24ρ+ 3ρ2 + 7ρ3)− θ3(−8 + 30ρ− 39ρ2 + 15ρ3)) (C.11)

aη,B =
δ(θ − 1)

384(1− δ)θ4
(ρ(−6 + 3ρ+ ρ2)− θ2(−4 + 3ρ2 − ρ3)− (C.12)

θ(8− 3ρ+ ρ2)− θ3(−8 + 18ρ− 9ρ2 + ρ3)) (C.13)

bγ =
δ(θ − 1)(ρ− 1)

θ
(C.14)

bϕ =
δ(θ − 1)(2− θ − 3θρ− θ2(4− 9ρ+ 3ρ2)

4θ3
(C.15)

bγ2
A
=

δ(θ − 1)(ρ− 1)(−3βθ(1 + θ(ρ− 2))(ρ− 1)

2θ3
(C.16)

bγ2
B
= −δ(θ − 1)(ρ− 1)(−3βθ(1 + θ(ρ− 2))(ρ− 1)

2θ3
(C.17)

bγBγA = 0 (C.18)

bη =
δ(θ − 1)(ρ− 1)(−2 + θ + 3θρ+ θ2(2− 5ρ+ ρ2)

2θ3
(C.19)
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Table 1: Values of parameters a and b under our calibration and nA = 0.5

aκ,2 aκ,22 aκ,3 aκ,4 aκ,Γ aγ,A aγ,B aϕ,A

12.5 6.25 4.17 1.04 12.25 14.97 9.52 12.93
aϕ,B aη,A aη,B bγ bϕ bγ2

A
bγ2

B
bγAγB bη,B

4.73 6.94 1.22 0.98 1.94 11.52 11.52 0 2.83

D Generating skewed-leptokurtic distributions

We generate skewed and leptokurtic distributions by adopting the mixed-Gaussian dis-

tribution approach discussed Farmer and Toda (2017, FT henceforth).11 In particular

we proceed in two steps. First, we calibrate the parameters of a three-elements Gaussian

mixture (i.e. weights, means and standard deviations of each element) by minimizing

the relative distance between the observed moments and those generated by this distri-

bution. Second, we implement the algorithm suggested by FT. This consists of matching

low-order moments of the conditional distribution using relative entropy as the objective

function (i.e. the Kullback-Leibler information).12

From the PWT version 10.01, we take the distribution of detrended log real

GDP (national accounts measure) as a proxy of country risk (in our model as proxy for

the TFP distribution). We remove countries that display very irregular GDP series (these

typically consist of countries torn by long conflicts, regime changes, extreme poverty or

simply very short series). We further drop countries at the lower and upper 5% of the

distribution of kurtosis (of the cyclical component; see below). We take kurtosis as

trimming criterion as it is the one with most extreme variation among moments. Our

final sample consists of 151 countries with annual series ending in 2019 and starting at

variable dates.
11See also Civale et al. (2017). The empirically relevant case is of leptokurtic distributions (fatter

tails than the Gaussian). We thus refer for simplicity to leptokurtosis as shorthand for non-Gaussian
kurtosis.

12We refer to Farmer and Toda (2017) for details. We implemented their method converting and
adapting their Matlab codes into Python.
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Figure 1: Correlation between empirical and discretization-based moments

Note: Empirical moments obtained from the simulation of an estimated AR(1) process for the cyclical com-
ponent of GDP (trend estimated using the Phillips and Shi (2020) method). “Discretized” moments
obtained from the simulation of a discretized Gaussian mixture model (à la Farmer and Toda, 2017)
calibrated on empirical moments. The solid blue line is the least-square regression. The gray area
represents the 95% confidence band. The dashed red line is the 45-degree line.

On the basis of this data we proceed as follows. First, we log-detrend real GDP

using the “boosted” HP (Hodrick and Prescott, 1997) filter developed by Phillips and

Shi (2020). Second, we fit an AR(1) process on detrended component of log-GDP. Third,

we compute the first four moments of the exogenous component of the AR(1) process

(the residual). Fourth, we use these moments to calibrate a mixed Gaussian distribution

for each country. Fifth, and finally, we discretize the mixed Gaussian using the FT

method. Figures 1-2 shows the alignment between the empirical moments (obtained by

simulating the estimated AR process) and those obtained by simulating the discretized

distribution.13.
13As discussed by FT, the discretization is not always feasible. In particular, FT decrease the number

of moments to be matched for each point on the grid of state variables of the AR(1) process, depending
on the success of matching the highest moment targeted. While our fourth step yields negligible residuals
for all countries, the fifth step (the FT method) generates heterogeneous results across countries: not
all tuples of moments can be matched equally well by a Gaussian mixture. To our knowledge this is an
unavoidable limitation of matching more than the first two moments of empirical distributions.
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Figure 2: Correlation between empirical and discretization-based moments

Note: See Figure 1

E Generation of an artificial sample of economies

A mixed-Gaussian distribution (with the underlying constraints on its parameters) can

map into a limited set of values for its moments. Only within this set it is possible to draw

moments that are independent of each other. Along the border of this set, changing one

moment requires adjusting other moments, thus generating a correlation among them.

Algorithm 1 is designed to draw from the set of admissible moments (second to fourth)

using a three-term mixed Gaussian distribution.

To search for the admissible set we drew 100,000 values for the second-to-fourth

uncentered moments from uniform distributions. The limits of these distributions were

set so that: stdev ∈ (0.001, .15), skewness ∈ (−3, 3) and kurtosis ∈ (3, 20). Moreover,

we drew the weights of the first two terms of the mixed-Gaussian distribution from the

(0, 1) interval (imposing that the sum of all three weights should be 1). Finally the

mean of the second and third Gaussian terms were drawn from the (−1, 1) interval; the

mean of the first term being set so to obtain a zero-mean for the whole mixed Gaussian

distribution.
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Algorithm 1 Construction of the artificial sample of countries
1: Express the TFP process of each country in terms of a three-term mixed Gaussian

distribution, e.g. for country A (analogously for country B)

σAεA,t ≈ p1N (m1, v1) + p2N (m2, v2) + (1− p1 − p2)N (m3, v3)

where N (mi, vi) is the Gaussian PDF with mean mi and variance vi and pi is the
weight of the i term in the mixed Gaussian distribution;

2: Express the parameters v1, v2 and v3 in terms of γA = E
(
σ2
Aε

2
A,t

)
, ϕA = E

(
σ3
Aε

3
A,t

)
and ηA = E

(
σ4
Aε

4
A,t

)
and the other parameters of the distributions.

3: Draw random values (from uniform distributions) for p1, p2,γA, ϕA, ηA, m2 and m3.
Where m1 is pinned down by the assumption that E (σAεA,t) = 0;

4: Discretize the resulting mixed-Gaussian distributions. Denote by ND the number of
these distributions;

5: Use the ND distributions to parameterize the TFP process of country A in ND

economies, where sizes are set randomly and country B is the same in all of the
ND economies.

6: Find the solution for all the ND economies.

Figure 3 shows a sub-set of variables of the artificial sample generated by fol-

lowing Algorithm 1. Particularly noteworthy is are the scatter plots relating the three

moments of interest. For example, the third and fourth columns of the second-last row

show the set of admissible values for the fourth uncentered moment mapped against

the second and third moments. Only within the set it is possible to pick independent

moments.

F Comparison of the perturbation solution with the

global solution

In the main text we have argued that the perturbation-based solution of the model

delivers qualitatively reliable results. This section offers an example of the gap between

the perturbation and global solution for a key variable in our analysis, κ. For this purpose

we solve the two-country model calibrated using the 477 ad-hoc constellations of moments

and sizes as well as the baseline parametrization discussed in the text. In the perturbation

method we use the ergodic moments implied by the discretization of the DGP for home

17



Figure 3: Distributions of the key variables in our ad-hoc sample.

18



Figure 4: Comparison of solution methods for κ
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Figure 4 show the value of κA,B (κ for short) obtained using perturbation method

(x-axis) against the value obtained using global methods (y-axis). The two methods give

mostly consistent results concerning the sign of (the log of) κ (the correlation is 0.97).

That said, perturbation methods tend to overstate the magnitude of κ. Although using

the ad-hoc sample magnifies the discrepancies (as it include more diverse values for the

moments), these result warrant the use of global solution methods.

G Unpacking the RoW into smaller units

To gauge whether subdividing the large regions into smaller units will affect our results,

note that by the equilibrium expression for µA,0

µA,0 =

[
nA + (1− nA)

N∑
i=1

N−1Q
ρ−1
ρ

A,i,0κA,i

]−1

(G.1)
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a country consumption share of total output will not vary as we increase N only if

Q
ρ−1
ρ

A,i,0κA,i remains constant. Consumption smoothing should not be affected by this sub-

partition of RoW, as the SDF will still be determined by global income. But the regression

results in the main text suggest that both κ and Q (via ToT )14 vary with size, albeit

considerably less than one-to-one. We can thus conclude that breaking up RoW into sub-

units does have material implications for country A’s consumption share and welfare.

Quantifying this effect would require solving our model for a sufficiently large number of

countries, at a very large computational cost.15

H Sign switches of the cumulants’ effects

In the text, we have argued that the the sign of cumulants’ (risk’s) effect on welfare

gains and on relative asset prices depends on the precise numerical constellation of deep

parameters: trade elasticity, risk aversion and size. These parameters have a bearing on

relative income risk.

Here we show that the predictions of the perturbation solution are remarkably

close to true properties of the model. Features that still lack a precise economic intuition.

Among these properties are non-linearities that may arise from skewness. For

transparency, here we make the case assuming parameter values that considerably simplify

the analysis. In particular we posit θ → ∞, nA = nB = 0.5, α = 1 and β = 0.98—so

that we are left with one single deep parameter to care about. Moreover, we assume that

DB,t = D̄B = 1 and φD = 0—so that the only source of risk comes from country A’s iid

TFP shock—and that DA,0 = D̄A = 1. Under these numerical assumptions, the asset
14Note that ToTau,0 = 1.
15Solving our three country model starting from a reasonable guesses of the state-space (e.g. solving

the equal-size case starting from the heterogeneous-size solution) takes approximately 19 hours on a
Laptop with 4-core Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz (3.80 max).
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price equations reduce to

PA,K,0 =
β

1− β
0.5−ρE0

[(
DA,t + D̄B

)−ρ
DA,t

]
(H.1a)

PB,K,0 =
β

1− β
0.5−ρE0

[(
DA,t + D̄B

)−ρ
D̄B

]
(H.1b)

where, by our Proposition 1, we know that (holding PPP) the difference in asset prices

maps into differences in welfare.

We posit a skewed normal distribution for DA,t,16 and compute PK,A,0 − PK,B,0

for different degrees of risk aversion (ρ). Figure 5 shows the slope coefficient of regressing

601 realizations of time-0 asset price differences on the corresponding third moment of

DA,t (vertical axis) against different values of ρ (horizontal axis). Remarkably, the price

difference (hence the difference in welfare under our assumptions) switches sign twice. In

line with the result in this figure, by taking a series expansion of equations (H.1a) and

(H.1b) we can pin down an approximation of the values of ρ at which the sign switch

occurs: the coefficient on the third moment switches sign twice at ρ = 0.54 and ρ = 2.46.17

The model predicts that, under perfect risk sharing, the valuation of the assets

in the country with the larger negative skewness is lower for ρ’s in the range entertained

in many quantitative studies, but can, counter-intuitively, be higher for either very low

or sufficiently high values of ρ—often advocated to match equity premia.18 The interest

in this result lies in unveiling how, in the model, the combination of LE and SE shaping
16The PDF of a variable x with skewed-normal probability distribution is f(x) =

2
σϕ
(
x−µ
σ

)
Φ
(
ξ
(
x−µ
σ

))
, where µ is the location parameter, σ is the scale parameter, ξ is the skewness-

controlling parameter, ϕ(·) is the PDF of the Gaussian distribution and Φ(·) is its CDF. We can thus
adjust µ and σ to keep mean and variance constant while changing ξ to obtain different degrees of
skewness. In each simulation we draw 10K values for DA,t, 801 values for the skewness parameter (from
−20 to 20, step = 0.05) and 51 values for ρ (from 0.1 to 5.1, step = 0.1). The implied range of the third
un-centered moment (E

(
D3

A,t

)
) is ±1.8.

17While not necessarily quantitatively precise (given the known limits of perturbation methods), the
approximation nonetheless provides an accurate qualitative prediction that we can verify using our global
solution.

18For example, in the open-macro literature, the relative risk-aversion parameter (with CRRA pref-
erences) is often 1 (the log case), or slightly above (e.g. Devereux and Engel, 2007 Obstfeld and Rogoff,
2000). In the equity-premium literature, with CRRA preference, values often need to be larger. See the
review by Mehra and Prescott (2003) and Cochrane (2008). Higher values are typically inconsistent with
estimates of the intertemporal elasticity of substitution (ρ−1 under CRRA), calling for preferences that
allow for a separation of the two parameters à la Epstein and Zin (1989). We consider these preferences
in Appendix I using global solution methods.
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Figure 5: Relative asset-price effect of DA,t skewness by varying ρ: sign-switches

the gains from trade in assets may vary with the curvature of the utility function—in

our example we focus on one homogeneous goods, hence ruling out income effects from

relative output price adjustment. The change is entirely driven by the equilibrium process

of the stochastic discount factor.

I Epstein-Zin preferences

It is well known that CRRA preferences generate limited risk premia (and thus gains

from risk sharing) for empirically plausible degrees of intertemporal substitution. This is

due to the constraint that the degree of risk aversion and the (inverse of the) elasticity of

intertemporal substitution are identical with CRRA preferences. Epstein-Zin preferences

(Epstein and Zin, 1989) allow to separate these parameters and have been widely used

to increase the role of risk in asset prices and welfare. These points have been widely

discussed in the literature, e.g. Epstein and Zin (1991), Lewis and Liu (2015), Rudebusch

and Swanson (2012), Coeurdacier et al. (2019).

In this appendix we replace the CRRA preferences with Epstein-Zin prefer-

ences in our model, and use global methods to assess the gains from risk sharing under

asymmetric higher moments and country size.

Epstein-Zin preferences introduce (three) extra state variables under complete
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markets and thus considerably slow down the solution algorithm. For this reason we only

solve the two-country version of our model for four different set of moments and size,

calibrated after Germany (DEU), Mexico (MEX), Brazil (BRA) and Thailand (THA).

I.1 Epstein-Zin preferences and Negishi weights

We follow Rudebusch and Swanson (2012) by assuming that the utility kernel of the

Epstein-Zin (EZ) preferences, e.g. for country A, takes the form

u(C, l) =
C1−ρ

A,t

1− ρ
− χ

L1+φ
A,t

1 + φ
. (I.1)

To avoid that the utility changes sign, these authors suggest to set ρ > 1 and define the

value function as

VA,t =(1− β)

(
C1−ρ

A,t

1− ρ
− χ

l1+φ
A,t

1 + φ

)
− β [Et ((−VA,t+1)

ς)]
1
ς (I.2)

where VA,t < 0 is the value function, where ς parameterizes risk-aversion. The larger ς

the higher is risk aversion. If ς = 1 preferences fall back to the CRRA case.

Focusing on the first order conditions related to the consumption and asset

choices it can be shown that the risk-sharing condition reduces to

−ρ (logCA,t − logCB,t) = ρ log κ+ logQA,B,t + ΩS
t (I.3)

where ρ log κ = log λA,0− log λB,0+logQA,B,0 and with λA,t denoting the Lagrange multi-

plier on the budget constraint of the households (i.e. the marginal utility of consumption),

and where

ΩS
t = Ω∗

t − Ωt + ΩS
t−1 (I.4)
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such that

Ωt = log β + log [Et−1 (V
ς
t )]

1
ς
−1 + log

(
V ς−1
t

)
. (I.5)

Equations (I.4) and (I.5) imply that the state-space solution of the model under EZ

preferences depends on more state variables than the CRRA case. Furthermore, it can

be shown that lagged expectations imply that the lagged exogenous shocks (TFP) will

appear among the state variables. Hence, in total we have three more state variables

relative to the CRRA case in the main text.

The EZ case also implies that the level effect (LE) does not reflect directly the

(exchange-rate adjusted) relative consumption. The latter is varying over time, unlike the

CRRA case. Our definition of LE, captured by κ, still relates to the time-zero (exchange-

rate adjusted) relative marginal utility of consumption, and is thus time invariant.

We solve the model using time-iteration techniques as described in the main text

and adapted for the larger set of state variables. Rudebusch and Swanson (2012) suggest

very large values for ς. The larger this parameter, though the harder is to find the model

solution. This requires very small values of the “learning” (aka diffusion) parameter, and

thus longer time to convergence (see Maliar and Maliar, 2014 for details). Furthermore,

starting from the CRRA case (ς = 1) we increase risk only gradually, taking the solution

at the lower value as the new starting point.

Rudebusch and Swanson (2012) show that EZ with preferences as in equation

(I.2) the implied consumption-based coefficient of relative risk aversion depends on labor

in a complex way. They target a coefficient of 75, which implies a value of ς of 149. We

consider an intermediate maximum value of ς = 30.5. All the other parameters have the

same values as in the baseline model discussed in the text, for both types of preferences.

The results are shown in Figure 6, comparing the ς = 1 case (i.e. CRRA preferences) with

this higher risk-aversion scenario (EZ preferences). Under our conservative calibration of

EZ preferences the gains are more than twice those generated under CRRA preferences.
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Figure 6: Comparison of gains from risk sharing under CRRA and EZ preferences
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J Correlation of TFP across countries and gains from

risk sharing

In the main text, for the sake of simplicity, we have assumed that the stochastic processes

for TFP are independent across countries. It is will understood that these processes may

nonetheless reflect some degree of correlation of the underlying sources of risk. The tradi-

tional IRBC literature, e.g. Backus et al. (1992) indeed assumes that the TFP processes

are correlated across countries. In this appendix we briefly discuss the implication for

risk sharing. We do so analytically focusing on the instructive limit case in which shocks

are perfectly correlated, yet they hit countries with different intensities. Without loss of

generality, we develop our argument using the the two-country version of the model.

In particular, we assume that

DB,t = ζDA,t; ζ ≥ 0. (J.1)

Equation (J.1) implies that corr (DA,t, DB,t) = 1. Yet, the intensity of the shocks differs
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across countries. In a stylized yet compelling way, this case captures one of the core

premises of our analysis—strong evidence that shocks, even when global in nature, affect

countries in largely asymmetric ways.

To show that perfect correlation of shocks does not rule out gains from risk

sharing, we solve the model imposing equation (J.1). Focusing on skewness, up to fourth

order of accuracy, we will have:

∂RGRS

∂ϕA

=
β(ζ − 1)3(θ − 1)2n2ρ(θρ+ θ + ρ− 3)

2(β − 1)θ3
+

β(ζ − 1)2(θ − 1)2ρ(ζ(2θρ− θ + ρ− 2) + (θ − 1)(ρ− 2) + 3n(−ζ(2θρ+ ρ− 3) + 2θ + ρ− 3))

6(β − 1)θ3

(J.2)

Similar expressions, albeit more involved, hold for variance and kurtosis. The main take-

away is straightforward: as long as global shocks hit countries with different intensities

(or transmit across borders asymmetrically), the gains from risk sharing are not zero,

and will generally differ across borders.

We conclude with a comment on the maintained view that the benefits from

international insurance are small if shocks are positively correlated across borders or have

global nature. From our analysis above, it follows that a higher degree of correlation of

GDP across countries may reduce or increase the gains from risk sharing, depending

on the underlying heterogeneity of shock intensity across borders. In this sense, the

high degree of dispersion in the distribution of moments that we document in the main

text is likely to generate gains from insurance dominate the mitigating effect of positive

correlations.

K PWT list of countries and moments

We use data from the Penn World Table (PWT) 10.1. Table 2 lists the countries available

in the dataset and the related iso3 abbreviations. Table 3 displays empirical moments

for a sub-set of these countries.
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Table 2: List of countries

ABW = Aruba
AGO = Angola
AIA = Anguilla
ALB = Albania
ARE = United Arab Emirates

ARG = Argentina
ATG = Antigua and Barbuda
AUS = Australia
AUT = Austria
BDI = Burundi

BEL = Belgium
BEN = Benin
BFA = Burkina Faso
BGD = Bangladesh
BGR = Bulgaria

BHR = Bahrain
BHS = Bahamas
BLZ = Belize
BMU = Bermuda
BOL = Bolivia (Plurinational State of)

BRA = Brazil
BRB = Barbados
BRN = Brunei Darussalam
BTN = Bhutan
BWA = Botswana

CAF = Central African Republic
CAN = Canada
CHE = Switzerland
CHL = Chile
CHN = China

CIV = Cote d’Ivoire
CMR = Cameroon
COD = Congo, Democratic Republic
COG = Congo
COL = Colombia

COM = Comoros
CPV = Cabo Verde
CRI = Costa Rica
CYM = Cayman Islands
CYP = Cyprus

DEU = Germany
DJI = Djibouti
DMA = Dominica
DNK = Denmark
DOM = Dominican Republic

DZA = Algeria
ECU = Ecuador
EGY = Egypt
ESP = Spain
ETH = Ethiopia

FIN = Finland
FJI = Fiji

FRA = France
GAB = Gabon
GBR = United Kingdom
GHA = Ghana
GIN = Guinea

GMB = Gambia
GNB = Guinea-Bissau
GNQ = Equatorial Guinea
GRC = Greece
GRD = Grenada

GTM = Guatemala
HKG = China, Hong Kong SAR
HND = Honduras
HTI = Haiti
HUN = Hungary

IDN = Indonesia
IND = India
IRL = Ireland
IRN = Iran (Islamic Republic of)
IRQ = Iraq

ISL = Iceland
ISR = Israel
ITA = Italy
JAM = Jamaica
JOR = Jordan

JPN = Japan
KEN = Kenya
KHM = Cambodia
KNA = Saint Kitts and Nevis
KOR = Republic of Korea

KWT = Kuwait
LAO = Lao People’s DR
LBN = Lebanon
LBR = Liberia
LCA = Saint Lucia

LKA = Sri Lanka
LSO = Lesotho
LUX = Luxembourg
MAC = China, Macao SAR
MAR = Morocco

MDG = Madagascar
MDV = Maldives
MEX = Mexico
MLI = Mali
MLT = Malta

MMR = Myanmar
MNG = Mongolia
MOZ = Mozambique
MRT = Mauritania
MSR = Montserrat

MUS = Mauritius
MWI = Malawi

MYS = Malaysia
NAM = Namibia
NER = Niger
NGA = Nigeria
NIC = Nicaragua

NLD = Netherlands
NOR = Norway
NPL = Nepal
NZL = New Zealand
OMN = Oman

PAK = Pakistan
PAN = Panama
PER = Peru
PHL = Philippines
POL = Poland

PRT = Portugal
PRY = Paraguay
PSE = State of Palestine
QAT = Qatar
ROU = Romania

RWA = Rwanda
SAU = Saudi Arabia
SDN = Sudan
SEN = Senegal
SGP = Singapore

SLE = Sierra Leone
SLV = El Salvador
STP = Sao Tome and Principe
SUR = Suriname
SWE = Sweden

SWZ = Eswatini
SYC = Seychelles
SYR = Syrian Arab Republic
TCA = Turks and Caicos Islands
TCD = Chad

TGO = Togo
THA = Thailand
TTO = Trinidad and Tobago
TUN = Tunisia
TUR = Turkey

TWN = Taiwan
TZA = U.R. of Tanzania: Mainland
UGA = Uganda
URY = Uruguay
USA = United States of America

VCT = St. Vincent & Grenadines
VEN = Venezuela (Bolivarian Republic of)
VGB = British Virgin Islands
VNM = Viet Nam
ZAF = South Africa

ZMB = Zambia
ZWE = Zimbabwe

27



Ta
bl

e
3:

Sa
m

pl
e

M
om

en
ts

C
ou

nt
ry

Po
pu

la
tio

n
St

de
v

Sk
ew

ne
ss

K
ur

to
sis

Po
pu

la
tio

n
C

ou
nt

ry
St

de
v

Sk
ew

ne
ss

K
ur

to
sis

A
G

O
31

.8
25

0.
04

7
-2

.4
21

14
.8

24
IS

R
8.

51
9

0.
03

0
-0

.9
53

4.
64

6
A

RG
44

.7
81

0.
04

3
-0

.9
29

4.
29

1
IT

A
60

.5
50

0.
01

8
0.

03
3

4.
19

1
A

U
S

25
.2

03
0.

01
7

-0
.9

56
5.

38
4

JP
N

12
6.

86
0

0.
01

9
-0

.5
89

3.
89

7
A

U
T

8.
95

5
0.

01
7

-0
.3

77
3.

48
5

K
O

R
51

.2
25

0.
02

9
-1

.1
63

4.
96

9
BE

L
11

.5
39

0.
01

3
-0

.5
32

3.
40

9
LU

X
0.

61
6

0.
02

7
0.

23
6

2.
81

4
BG

R
7.

00
0

0.
03

4
-0

.3
81

6.
53

6
M

EX
12

7.
57

6
0.

02
7

-0
.6

26
4.

10
6

BO
L

11
.5

13
0.

03
4

-0
.9

16
7.

13
8

M
LT

0.
44

0
0.

03
0

0.
02

0
2.

19
8

BR
A

21
1.

05
0

0.
02

7
-0

.2
43

3.
02

5
M

Y
S

31
.9

50
0.

02
9

-0
.6

13
4.

71
6

C
A

N
37

.4
11

0.
01

8
-0

.6
63

4.
14

4
N

A
M

2.
49

5
0.

02
3

0.
42

6
2.

99
7

C
H

E
8.

59
1

0.
01

9
-0

.8
64

4.
43

4
N

LD
17

.0
97

0.
01

7
-0

.3
52

2.
61

3
C

H
L

18
.9

52
0.

04
2

-0
.8

21
4.

85
2

N
O

R
5.

37
9

0.
01

2
0.

11
0

2.
55

0
C

H
N

14
33

.7
84

0.
04

5
-1

.3
31

7.
01

1
N

ZL
4.

78
3

0.
02

7
0.

01
6

2.
80

0
C

O
L

50
.3

39
0.

01
7

-0
.4

47
3.

18
1

PE
R

32
.5

10
0.

03
7

-0
.1

41
4.

84
6

C
Y

P
0.

86
8

0.
04

9
-1

.7
87

8.
97

5
PH

L
10

8.
11

7
0.

02
5

-1
.2

97
6.

59
2

C
ZE

10
.6

89
0.

02
1

-0
.9

95
9.

42
1

PO
L

37
.8

88
0.

03
1

-1
.5

26
6.

18
0

D
EU

83
.5

17
0.

01
7

-0
.8

89
5.

10
9

PR
T

10
.2

26
0.

02
3

-0
.5

04
4.

26
3

D
N

K
5.

77
2

0.
01

8
-0

.2
80

2.
73

6
PR

Y
7.

04
5

0.
02

9
0.

05
5

3.
01

3
EG

Y
10

0.
38

8
0.

03
0

1.
15

9
5.

86
9

Q
AT

2.
83

2
0.

03
9

1.
08

9
6.

21
7

ES
P

46
.7

37
0.

02
7

-0
.6

86
5.

93
8

R
O

U
19

.3
65

0.
03

8
-0

.4
64

3.
50

6
ES

T
1.

32
6

0.
03

8
-2

.1
21

12
.1

34
SA

U
34

.2
69

0.
05

8
-0

.5
38

3.
46

4
FI

N
5.

53
2

0.
02

5
-0

.5
13

3.
04

6
SG

P
5.

80
4

0.
03

0
-0

.8
40

3.
59

3
FR

A
67

.3
51

0.
01

2
-0

.6
46

3.
79

5
SV

K
5.

45
7

0.
02

7
-1

.0
50

9.
59

3
G

BR
67

.5
30

0.
01

7
0.

13
1

3.
37

4
SV

N
2.

07
9

0.
02

0
-1

.1
96

8.
22

0
G

RC
10

.4
73

0.
03

0
-0

.6
79

3.
60

2
SW

E
10

.0
36

0.
01

6
-0

.9
69

4.
78

6
H

K
G

7.
43

6
0.

03
2

-0
.2

37
2.

88
8

T
H

A
69

.6
26

0.
04

1
0.

73
0

9.
18

9
H

U
N

9.
68

5
0.

02
3

-1
.7

52
8.

56
9

T
U

N
11

.6
95

0.
03

0
0.

97
5

8.
12

0
ID

N
27

0.
62

6
0.

02
6

-1
.4

93
10

.7
13

T
U

R
83

.4
30

0.
04

2
-0

.2
86

3.
30

6
IN

D
13

66
.4

18
0.

02
2

-0
.1

68
4.

29
6

T
W

N
23

.5
96

0.
02

2
-0

.2
20

2.
67

2
IR

L
4.

88
2

0.
03

1
1.

10
8

8.
15

1
U

RY
3.

46
2

0.
03

2
-0

.0
91

2.
75

8
IR

N
82

.9
14

0.
08

4
-1

.8
40

11
.3

91
U

SA
32

9.
06

5
0.

01
7

-0
.6

01
3.

30
4

IS
L

0.
33

9
0.

03
5

-0
.4

50
2.

80
2

ZA
F

58
.5

58
0.

01
6

0.
04

5
2.

86
2

28



References

Backus, D., Chernov, M., and Martin, I. (2011). “Disasters implied by equity index

options.” The journal of finance, 66(6), 1969–2012.

Backus, D.K., Kehoe, P.J., and Kydland, F.E. (1992). “International Real Business

Cycles.” Journal of Political Economy, 100(4), 745–775.

Bansal, R. and Yaron, A. (2004). “Risks for the Long Run: A Potential Resolution

of Asset Pricing Puzzles.” Journal of Finance, 1481–1509.

Civale, S., Díez-Catalán, L., and Fazilet, F. (2017). “Discretizing a process with

non-zero skewness and high kurtosis.” Manuscript.

Cochrane, J.H. (2008). “Chapter 7 - financial markets and the real economy.” In

R. Mehra (ed.), “Handbook of the Equity Risk Premium,” Handbooks in Finance (San

Diego: Elsevier), 237–325.

Coeurdacier, N., Rey, H., and Winant, P. (2011). “The risky steady state.” Amer-

ican Economic Review, 101(3), 398–401.

Coeurdacier, N., Rey, H., and Winant, P. (2019). “Financial Integration and

Growth in a Risky World.” Journal of Monetary Economics.

Devereux, M.B. and Engel, C. (2007). “Expenditure Switching Versus Real Ex-

change Rate Stabilization: Competing Objectives for Exchange Rate Policy.” Journal

of Monetary Economics, 54(8), 2346–2374.

Devereux, M.B. and Sutherland, A. (2011). “Country Portfolios In Open Economy

Macro-Models.” Journal of the European Economic Association, 9(2), 337–369.

Epstein, L.G. and Zin, S.E. (1989). “Substitution, Risk Aversion, and the Temporal

Behavior of Consumption and Asset Returns: A Theoretical Framework.” Economet-

rica, 57(4), 937.

Epstein, L.G. and Zin, S.E. (1991). “Substitution, risk aversion, and the temporal

behavior of consumption and asset returns: An empirical analysis.” Journal of political

Economy, 99(2), 263–286.

29



Farmer, L.E. and Toda, A.A. (2017). “Discretizing nonlinear, non-gaussian markov

processes with exact conditional moments.” Quantitative Eonomics, 8, 651–683.

Hodrick, R.J. and Prescott, E.C. (1997). “Postwar U.S. Business Cycles: An

Empirical Investigation.” Journal of Money, Credit and Banking, 29(1), 1.

Holmes, M.H. (1995). Introduction to Perturbation Methods (Springer).

Juillard, M. (1996). “Dynare: A Program for the Resolution and Simulation of Dy-

namic Models with Forward Variables through the Use of a Relaxation Algorithm.”

CEPREMAP, Couverture Orange No. 9206.

Lewis, K.K. and Liu, E.X. (2015). “Evaluating International Consumption Risk Shar-

ing Gains: An Asset Return View.” Journal of Monetary Economics, 71, 84–98.

Ljungqvist, L. and Sargent, T.J. (2012). Recursive Macroeconomic Theory (Cam-

bridge, MA: MIT Press).

Lombardo, G. and Uhlig, H. (2018). “A Theory of Pruning.” International Economic

Review, 59(4), 1825–1836.

Maliar, L. and Maliar, S. (2014). “Numerical methods for large-scale dynamic eco-

nomic models.” In “Handbook of computational economics,” volume 3 (Elsevier), 325–

477.

Mehra, R. and Prescott, E.C. (2003). “The equity premium in retrospect.” Handbook

of the Economics of Finance, 1, 889–938.

Obstfeld, M. and Rogoff, K. (2000). “The six major puzzles in international macroe-

conomics: is there a common cause?” NBER macroeconomics annual, 15, 339–390.

Phillips, P.C. and Shi, Z. (2020). “Boosting: Why you can use the hp filter.” Inter-

national Economic Review.

Rudebusch, G.D. and Swanson, E.T. (2012). “The bond premium in a DSGE model

with long-run real and nominal risks.” American Economic Journal: Macroeconomics,

4(1), 105–143.

30


	Summary of the three-country model
	Financial autarky: three-country model

	Perturbation Methods
	Series expansion and cumulant-generating function
	A useful efficient procedure
	Higher-order accurate solution of the Negishi weights


	Analytical results
	Generating skewed-leptokurtic distributions 
	Generation of an artificial sample of economies
	Comparison of the perturbation solution with the global solution
	Unpacking the RoW into smaller units
	Sign switches of the cumulants' effects
	Epstein-Zin preferences
	Epstein-Zin preferences and Negishi weights

	Correlation of TFP across countries and gains from risk sharing
	PWT list of countries and moments

