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Abstract

As a unified discipline, econometrics is still relatively young and has been transforming and expanding

very rapidly over the past few decades. Major advances have taken place in the analysis of cross sectional

data by means of semi-parametric and non-parametric techniques. Heterogeneity of economic relations

across individuals, firms and industries is increasingly acknowledged and attempts have been made to

take them into account either by integrating out their effects or by modeling the sources of heterogeneity

when suitable panel data exists. The counterfactual considerations that underlie policy analysis and treat-

ment evaluation have been given a more satisfactory foundation. New time series econometric techniques

have been developed and employed extensively in the areas of macroeconometrics and finance. Non-linear

econometric techniques are used increasingly in the analysis of cross section and time series observations.

Applications of Bayesian techniques to econometric problems have been given new impetus largely thanks

to advances in computer power and computational techniques. The use of Bayesian techniques have in

turn provided the investigators with a unifying framework where the tasks of forecasting, decision making,

model evaluation and learning can be considered as parts of the same interactive and iterative process;

thus paving the way for establishing the foundation of “real time econometrics”. This paper attempts to

provide an overview of some of these developments.
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1 What is Econometrics?

Broadly speaking, econometrics aims to give empirical content to economic relations for

testing economic theories, forecasting, decision making, and for ex post decision/policy

evaluation. The term ‘econometrics’ appears to have been first used by Pawel Ciompa

as early as 1910, although it is Ragnar Frisch who takes the credit for coining the term,

and for establishing it as a subject in the sense in which it is known today (see Frisch,

1936, p. 95, and Bjerkholt, 1995). By emphasizing the quantitative aspects of economic

relationships, econometrics calls for a ‘unification’ of measurement and theory in eco-

nomics. Theory without measurement can only have limited relevance for the analysis

of actual economic problems. Whilst measurement without theory, being devoid of a

framework necessary for the interpretation of the statistical observations, is unlikely to

result in a satisfactory explanation of the way economic forces interact with each other.

Neither ‘theory’ nor ‘measurement’ on their own is sufficient to further our understanding

of economic phenomena.

As a unified discipline, econometrics is still relatively young and has been transform-

ing and expanding very rapidly over the past two decades since an earlier version of

this entry was published in the New Palgrave in 1987. Major advances have taken place

in the analysis of cross sectional data by means of semi-parametric and non-parametric

techniques. Heterogeneity of economic relations across individuals, firms and industries is

increasingly acknowledged and attempts have been made to take them into account either

by integrating out their effects or by modeling the sources of heterogeneity when suitable

panel data exists. The counterfactual considerations that underlie policy analysis and

treatment evaluation have been given a more satisfactory foundation. New time series

econometric techniques have been developed and employed extensively in the areas of

macroeconometrics and finance. Non-linear econometric techniques are used increasingly

in the analysis of cross section and time series observations. Applications of Bayesian

techniques to econometric problems have been given new impetus largely thanks to ad-

vances in computer power and computational techniques. The use of Bayesian techniques

have in turn provided the investigators with a unifying framework where the tasks of fore-

casting, decision making, model evaluation and learning can be considered as parts of the

same interactive and iterative process; thus paving the way for establishing the foundation

of “real time econometrics”. See Pesaran and Timmermann (2005a).

This entry attempts to provide an overview of some of these developments. But to

give an idea of the extent to which econometrics has been transformed over the past

decades we begin with a brief account of the literature that pre-dates econometrics, dis-

cuss the birth of econometrics and its subsequent developments to the present. Inevitably,

our accounts will be brief and non-technical. Readers interested in more details are ad-
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vised to consultant the specific entries provided in the New Palgrave and the excellent

general texts by Maddala (2001), Greene (2003), Davidson and MacKinnon (2004), and

Wooldridge (2006), as well as texts on specific topics such as: Cameron and Trivedi

(2005) on microeconometrics, Maddala (1983) on econometric models involving limited-

dependent and qualitative variables, Arellano (2003), Baltagi (2005), Hsiao (2003), and

Wooldridge (2002) on panel data econometrics, Johansen (1995) on cointegration analy-

sis, Hall (2005) on generalized method of moments, Bauwens et al. (2001), Koop (2003),

Lancaster (2004), and Geweke (2005) on Bayesian econometrics, Bosq (1996), Fan and

Gijbels (1996), Horowitz (1998), Härdle (1990,1994), and Pagan and Ullah (1999) on non-

parametric and semiparametric econometrics, Campbell, Lo and MacKinlay (1997) and

Gourieroux and Jasiak (2001) on financial econometrics, Granger and Newbold (1986),

Lűtkepohl (1991) and Hamilton (1994) on time series analysis.

2 Quantitative Research in Economics: Historical

Backgrounds

Empirical analysis in economics has had a long and fertile history, the origins of which

can be traced at least as far back as the work of the 16th-century Political Arithmeticians

such as William Petty, Gregory King and Charles Davenant. The political arithmeticians,

led by Sir William Petty, were the first group to make systematic use of facts and figures

in their studies. They were primarily interested in the practical issues of their time, rang-

ing from problems of taxation and money to those of international trade and finance.

The hallmark of their approach was undoubtedly quantitative and it was this which

distinguished them from the rest of their contemporaries. Although the political arith-

meticians were primarily and understandably preoccupied with statistical measurement

of economic phenomena, the work of Petty, and that of King in particular, represented

perhaps the first examples of a unified quantitative/theoretical approach to economics.

Indeed Schumpeter in his History of Economic Analysis (1954) goes as far as to say that

the works of the political arithmeticians ‘illustrate to perfection, what Econometrics is

and what Econometricians are trying to do’ (p. 209).

The first attempt at quantitative economic analysis is attributed to Gregory King,

who was the first to fit a linear function of changes in corn prices on deficiencies in the

corn harvest, as reported in Charles Davenant (1698). One important consideration in the

empirical work of King and others in this early period seems to have been the discovery

of ‘laws’ in economics, very much like those in physics and other natural sciences.

This quest for economic laws was, and to a lesser extent still is, rooted in the desire to

give economics the status that Newton had achieved for physics. This was in turn reflected
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in the conscious adoption of the method of the physical sciences as the dominant mode of

empirical enquiry in economics. The Newtonian revolution in physics, and the philosophy

of ‘physical determinism’ that came to be generally accepted in its aftermath, had far-

reaching consequences for the method as well as the objectives of research in economics.

The uncertain nature of economic relations only began to be fully appreciated with the

birth of modern statistics in the late 19th century and as more statistical observations

on economic variables started to become available.

The development of statistical theory in the hands of Galton, Edgeworth and Pearson

was taken up in economics with speed and diligence. The earliest applications of simple

correlation analysis in economics appear to have been carried out by Yule (1895, 1896) on

the relationship between pauperism and the method of providing relief, and by Hooker

(1901) on the relationship between the marriage-rate and the general level of prosperity

in the United Kingdom, measured by a variety of economic indicators such as imports,

exports, and the movement in corn prices.

Benini (1907), the Italian statistician was the first to make use of the method of

multiple regression in economics. But Henry Moore (1914, 1917) was the first to place

the statistical estimation of economic relations at the centre of quantitative analysis in

economics. Through his relentless efforts, and those of his disciples and followers Paul

Douglas, Henry Schultz, Holbrook Working, Fred Waugh and others, Moore in effect laid

the foundations of ‘statistical economics’, the precursor of econometrics. The monumen-

tal work of Schultz, The Theory and the Measurement of Demand (1938), in the United

States and that of Allen and Bowley, Family Expenditure (1935), in the United Kingdom,

and the pioneering works of Lenoir (1913), Wright (1915, 1928), Working (1927), Tin-

bergen (1929-30) and Frisch (1933) on the problem of ‘identification’ represented major

steps towards this objective. The work of Schultz was exemplary in the way it attempted

a unification of theory and measurement in demand analysis; whilst the work on identi-

fication highlighted the importance of ‘structural estimation’ in econometrics and was a

crucial factor in the subsequent developments of econometric methods under the auspices

of the Cowles Commission for Research in Economics.

Early empirical research in economics was by no means confined to demand analysis.

Louis Bachelier (1900), using time series data on French equity prices recognized the ran-

dom walk character of equity prices which proved to be the precursor to the vast empirical

literature on market efficiency hypothesis that has evolved since the early 1960’s. Another

important area was research on business cycles, which provided the basis of the later de-

velopment in time-series analysis and macroeconometric model building and forecasting.

Although, through the work of Sir William Petty and other early writers, economists had

been aware of the existence of cycles in economic time series, it was not until the early

19th century that the phenomenon of business cycles began to attract the attention that
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it deserved. Clement Juglar (1819—1905), the French physician turned economist, was the

first to make systematic use of time-series data to study business cycles, and is credited

with the discovery of an investment cycle of about 7—11 years duration, commonly known

as the Juglar cycle. Other economists such as Kitchin, Kuznets and Kondratieff followed

Juglar’s lead and discovered the inventory cycle (3—5 years duration), the building cy-

cle (15—25 years duration) and the long wave (45—60 years duration), respectively. The

emphasis of this early research was on the morphology of cycles and the identification

of periodicities. Little attention was paid to the quantification of the relationships that

may have underlain the cycles. Indeed, economists working in the National Bureau of

Economic Research under the direction of Wesley Mitchell regarded each business cycle

as a unique phenomenon and were therefore reluctant to use statistical methods except in

a non-parametric manner and for purely descriptive purposes (see, for example, Mitchell,

1928 and Burns and Mitchell, 1947). This view of business cycle research stood in sharp

contrast to the econometric approach of Frisch and Tinbergen and culminated in the fa-

mous methodological interchange between Tjalling Koopmans and Rutledge Vining about

the roles of theory and measurement in applied economics in general and business cycle

research in particular. (This interchange appeared in the August 1947 and May 1949

issues of The Review of Economics and Statistics.)

3 The Birth of Econometrics

Although, quantitative economic analysis is a good three centuries old, econometrics as

a recognized branch of economics only began to emerge in the 1930s and the 1940s with

the foundation of the Econometric Society, the Cowles Commission in the United States,

and the Department of Applied Economics in Cambridge, England.1 This was largely

due to the multi-disciplinary nature of econometrics, comprising of economic theory, data,

econometric methods, and computing techniques. Progress in empirical economic analysis

often requires synchronous developments in all these four components.

Initially, the emphasis was on the development of econometric methods. The first ma-

jor debate over econometric method concerned the applicability of the probability calculus

and the newly developed sampling theory of R.A. Fisher to the analysis of economic data.

Frisch (1934) was highly skeptical of the value of sampling theory and significance tests in

econometrics. His objection was not, however, based on the epistemological reasons that

lay behind Robbins’s and Keynes’s criticisms of econometrics. He was more concerned

with the problems of multicollinearity and measurement errors which he believed were

pervasive in economics and to deal with the measurement error problem he developed his

1An account of the founding of the first two organizations can be found in Christ (1952, 1983), while
the history of the DAE is covered in Stone (1978).
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confluence analysis and the method of ‘bunch maps’. Although used by some econome-

tricians, notably Tinbergen (1939) and Stone (1945), the bunch map analysis did not find

much favour with the profession at large. Instead, it was the probabilistic rationalizations

of regression analysis, advanced by Koopmans (1937) and Haavelmo (1944), that formed

the basis of modern econometrics.

Koopmans did not, however, emphasize the wider issue of the use of stochastic models

in econometrics. It was Haavelmo who exploited the idea to the full, and argued for an

explicit probability approach to the estimation and testing of economic relations. In his

classic paper published as a supplement to Econometrica in 1944, Haavelmo defended the

probability approach on two grounds: firstly, he argued that the use of statistical measures

such as means, standard errors and correlation coefficients for inferential purposes is

justified only if the process generating the data can be cast in terms of a probability

model. Secondly, he argued that the probability approach, far from being limited in

its application to economic data, because of its generality is in fact particularly suited

for the analysis of ‘dependent’ and ‘non-homogeneous’ observations often encountered in

economic research.

The probability model is seen by Haavelmo as a convenient abstraction for the purpose

of understanding, or explaining or predicting events in the real world. But it is not claimed

that the model represents reality in all its details. To proceed with quantitative research

in any subject, economics included, some degree of formalization is inevitable, and the

probability model is one such formalization. The attraction of the probability model as

a method of abstraction derives from its generality and flexibility, and the fact that no

viable alternative seems to be available.

Haavelmo’s contribution was also important as it constituted the first systematic de-

fence against Keynes’s (1939) influential criticisms of Tinbergen’s pioneering research on

business cycles and macroeconometric modelling. The objective of Tinbergen’s research

was twofold. Firstly, to show how a macroeconometric model may be constructed and

then used for simulation and policy analysis (Tinbergen, 1937). Secondly, ‘to submit

to statistical test some of the theories which have been put forward regarding the char-

acter and causes of cyclical fluctuations in business activity’ (Tinbergen, 1939, p. 11).

Tinbergen assumed a rather limited role for the econometrician in the process of testing

economic theories, and argued that it was the responsibility of the ‘economist’ to specify

the theories to be tested. He saw the role of the econometrician as a passive one of

estimating the parameters of an economic relation already specified on a priori grounds

by an economist. As far as statistical methods were concerned he employed the regres-

sion method and Frisch’s method of confluence analysis in a complementary fashion.

Although Tinbergen discussed the problems of the determination of time lags, trends,

structural stability and the choice of functional forms, he did not propose any systematic
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methodology for dealing with them. In short, Tinbergen approached the problem of test-

ing theories from a rather weak methodological position. Keynes saw these weaknesses

and attacked them with characteristic insight (Keynes, 1939). A large part of Keynes’s

review was in fact concerned with technical difficulties associated with the application of

statistical methods to economic data. Apart from the problems of the ‘dependent’ and

‘non-homogeneous’ observations mentioned above, Keynes also emphasized the problems

of misspecification, multi-collinearity, functional form, dynamic specification, structural

stability, and the difficulties associated with the measurement of theoretical variables.

By focussing his attack on Tinbergen’s attempt at testing economic theories of business

cycles, Keynes almost totally ignored the practical significance of Tinbergen’s work for

econometric model building and policy analysis (for more details, see Pesaran and Smith,

1985a).

In his own review of Tinbergen’s work, Haavelmo (1943) recognized the main burden

of the criticisms of Tinbergen’s work by Keynes and others, and argued the need for a

general statistical framework to deal with these criticisms. As we have seen, Haavelmo’s

response, despite the views expressed by Keynes and others, was to rely more, rather than

less, on the probability model as the basis of econometric methodology. The technical

problems raised by Keynes and others could now be dealt with in a systematic manner

by means of formal probabilistic models. Once the probability model was specified, a

solution to the problems of estimation and inference could be obtained by means of

either classical or of Bayesian methods. There was little that could now stand in the way

of a rapid development of econometric methods.

4 Early Advances in Econometric Methods

Haavelmo’s contribution marked the beginning of a new era in econometrics, and paved

the way for the rapid development of econometrics, with the likelihood method gaining

importance as a tool for identification, estimation and inference in econometrics.

4.1 Identification of Structural Parameters

The first important breakthrough came with a formal solution to the identification prob-

lem which had been formulated earlier by Working (1927). By defining the concept of

‘structure’ in terms of the joint probability distribution of observations, Haavelmo (1944)

presented a very general concept of identification and derived the necessary and sufficient

conditions for identification of the entire system of equations, including the parameters

of the probability distribution of the disturbances. His solution, although general, was

rather difficult to apply in practice. Koopmans, Rubin and Leipnik (1950) used the term
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‘identification’ for the first time in econometrics, and gave the now familiar rank and

order conditions for the identification of a single equation in a system of simultaneous

linear equations. The solution of the identification problem by Koopmans (1949) and

Koopmans, Rubin and Leipnik (1950), was obtained in the case where there are a priori

linear restrictions on the structural parameters. They derived rank and order conditions

for identifiability of a single equation from a complete system of equations without refer-

ence to how the variables of the model are classified as endogenous or exogenous. Other

solutions to the identification problem, also allowing for restrictions on the elements of

the variance-covariance matrix of the structural disturbances, were later offered by Wegge

(1965) and Fisher (1966).

Broadly speaking, a model is said to be identified if all its structural parameters can be

obtained from the knowledge of its implied joint probability distribution for the observed

variables. In the case of simultaneous equations models prevalent in econometrics the

solution to the identification problem depends on whether there exists a sufficient number

of a priori restrictions for the derivation of the structural parameters from the reduced-

form parameters. Although the purpose of the model and the focus of the analysis

on explaining the variations of some variables in terms of the unexplained variations

of other variables is an important consideration, in the final analysis the specification

of a minimum number of identifying restrictions was seen by researchers at the Cowles

Commission to be the function and the responsibility of ‘economic theory’. This attitude

was very much reminiscent of the approach adopted earlier by Tinbergen in his business

cycle research: the function of economic theory was to provide the specification of the

econometric model, and that of econometrics to furnish statistically optimal methods

of estimation and inference. More specifically, at the Cowles Commission the primary

task of econometrics was seen to be the development of statistically efficient methods for

the estimation of structural parameters of an a priori specified system of simultaneous

stochastic equations.

More recent developments in identification of structural parameters in context of semi-

parametric models is discussed below in Section 12. See also Manski (1995).

4.2 Estimation and Inference in Simultaneous Equation Models

Initially, under the influence of Haavelmo’s contribution, the maximum likelihood (ML)

estimation method was emphasized as it yielded consistent estimates. Anderson and

Rubin (1949) developed the Limited Information Maximum Likelihood (LIML) method,

and Koopmans and others (1950) proposed the Full Information Maximum Likelihood

(FIML). Both methods are based on the joint probability distribution of the endogenous

variables conditional on the exogenous variables and yield consistent estimates, with the
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former utilizing all the available a priori restrictions and the latter only those which

related to the equation being estimated. Soon other computationally less demanding

estimation methods followed, both for a fully efficient estimation of an entire system of

equations and for a consistent estimation of a single equation from a system of equations.

The Two-Stage Least Squares (2SLS) procedure was independently proposed by Theil

(1954, 1958) and Basmann (1957). At about the same time the instrumental variable (IV)

method, which had been developed over a decade earlier by Reiersol (1941, 1945), and

Geary (1949) for the estimation of errors-in-variables models, was generalized and applied

by Sargan (1958) to the estimation of simultaneous equation models. Sargan’s generalized

IV estimator (GIVE) provided an asymptotically efficient technique for using surplus

instruments in the application of the IV method to econometric problems, and formed

the basis of subsequent developments of the generalized method of moments (GMM)

estimators introduced subsequently by Hansen (1982). A related class of estimators,

known as k-class estimators, was also proposed by Theil (1958). Methods of estimating

the entire system of equations which were computationally less demanding than the FIML

method were also advanced. These methods also had the advantage that unlike the FIML

did not require the full specification of the entire system. These included the Three-Stage

Least Squares method due to Zellner and Theil (1962), the iterated instrumental variables

method based on the work of Lyttkens (1970), Brundy and Jorgenson (1971), Dhrymes

(1971); and the system k-class estimators due to Srivastava (1971) and Savin (1973).

Important contributions have also been made in the areas of estimation of simultaneous

non-linear (Amemiya 1983), the seemingly unrelated regression model proposed by Zellner

(1962), and the simultaneous rational expectations models (see Section 7.1 below).

Interest in estimation of simultaneous equation models coincided with the rise of

Keynesian economics in early 1960’s, and started to wane with the advent of the rational

expectations revolution and its emphasis on the GMM estimation of the structural para-

meters from the Euler equations (first order optimization conditions). See Section 7 below.

But with the rise of the dynamic stochastic general equilibrium models in macroecono-

metrics a revival of interest in identification and estimation of non-linear simultaneous

equation models seems quite likely. The recent contribution of Fernandez-Villaverde and

Rubio-Ramirez (2005) represents a start in this direction.

4.3 Developments in Time Series Econometrics

While the initiative taken at the Cowles Commission led to a rapid expansion of econo-

metric techniques, the application of these techniques to economic problems was rather

slow. This was partly due to a lack of adequate computing facilities at the time. A

more fundamental reason was the emphasis of the research at the Cowles Commission on
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the simultaneity problem almost to the exclusion of other econometric problems. Since

the early applications of the correlation analysis to economic data by Yule and Hooker,

the serial dependence of economic time series and the problem of nonsense or spurious

correlation that it could give rise to had been the single most important factor explain-

ing the profession’s scepticism concerning the value of regression analysis in economics.

A satisfactory solution to the spurious correlation problem was therefore needed before

regression analysis of economic time series could be taken seriously. Research on this

topic began in the mid—1940s at the Department of Applied Economics (DAE) in Cam-

bridge, England, as a part of a major investigation into the measurement and analysis of

consumers’ expenditure in the United Kingdom (see Stone and others, 1954). Although

the first steps towards the resolution of the spurious correlation problem had been taken

by Aitken (1934/35) and Champernowne (1948), the research in the DAE introduced

the problem and its possible solution to the attention of applied economists. Orcutt

(1948) studied the autocorrelation pattern of economic time series and showed that most

economic time series can be represented by simple autoregressive processes with similar

autoregressive coefficients. Subsequently, Cochrane and Orcutt (1949) made the impor-

tant point that the major consideration in the analysis of stationary time series was the

autocorrelation of the error term in the regression equation and not the autocorrelation

of the economic time series themselves. In this way they shifted the focus of attention to

the autocorrelation of disturbances as the main source of concern. Although, as it turns

out, this is a valid conclusion in the case of regression equations with strictly exogenous

regressors; in more realistic set ups where the regressors are weakly exogenous the serial

correlation of the regressors are also likely to be of concern in practice. See, for example,

Stambaugh (1999).

Another important and related development was the work of Durbin and Watson

(1950, 1951) on the method of testing for residual autocorrelation in the classical re-

gression model. The inferential breakthrough for testing serial correlation in the case

of observed time-series data had already been achieved by von Neumann (1941, 1942),

and by Hart and von Neumann (1942). The contribution of Durbin and Watson was,

however, important from a practical viewpoint as it led to a bounds test for residual

autocorrelation which could be applied irrespective of the actual values of the regressors.

The independence of the critical bounds of the Durbin-Watson statistic from the matrix

of the regressors allowed the application of the statistic as a general diagnostic test, the

first of its type in econometrics. The contributions of Cochrane and Orcutt and of Durbin

and Watson marked the beginning of a new era in the analysis of economic time-series

data and laid down the basis of what is now known as the ‘time-series econometrics’

approach.
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5 Consolidation and Applications

The work at the Cowles Commission on identification and estimation of the simultaneous

equation model and the development of time series techniques paved the way for wide-

spread application of econometric methods to economic and financial problems. This was

helped significantly by the rapid expansion of computing facilities, advances in financial

and macroeconomic modelling, and the increased availability of economic data sets, cross

section as well as time series.

5.1 Macroeconometric Modelling

Inspired by the pioneering work of Tinbergen, Klein (1947, 1950) was the first to con-

struct a macroeconometric model in the tradition of the Cowles Commission. Soon others

followed Klein’s lead. Over a short space of time macroeconometric models were built for

almost every industrialized country, and even for some developing and centrally planned

economies. Macroeconometric models became an important tool of ex ante forecasting

and economic policy analysis, and started to grow both in size and sophistication. The

relatively stable economic environment of the 1950s and 1960s was an important factor

in the initial success enjoyed by macroeconometric models. The construction and use of

large-scale models presented a number of important computational problems, the solution

of which was of fundamental significance not only for the development of macroecono-

metric modelling, but also for econometric practice in general. In this respect advances

in computer technology were clearly instrumental, and without them it is difficult to

imagine how the complicated computational problems involved in the estimation and

simulation of large-scale models could have been solved. The increasing availability of

better and faster computers was also instrumental as far as the types of problems studied

and the types of solutions offered in the literature were concerned. For example, recent

developments in the area of microeconometrics (see section 6.3 below) could hardly have

been possible if it were not for the very important recent advances in computing facilities.

5.2 Dynamic Specification

Other areas where econometrics witnessed significant developments included dynamic

specification, latent variables, expectations formation, limited dependent variables, dis-

crete choice models, random coefficient models, disequilibrium models, non-linear esti-

mation, and the analysis of panel data models. Important advances were also made in

the area of Bayesian econometrics. largely thanks to the publication of Zellner’s 1971

textbook, which built on his earlier work including important papers with George Tiao.

The Seminar on Bayesian Inference in Econometrics and Statistics (SBIES) was founded
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shortly after the publication of the book, and was key in the development and diffusion

of Bayesian ideas in econometrics. It was, however, the problem of dynamic specifica-

tion that initially received the greatest attention. In an important paper, Brown (1952)

modelled the hypothesis of habit persistence in consumer behaviour by introducing lagged

values of consumption expenditures into an otherwise static Keynesian consumption func-

tion. This was a significant step towards the incorporation of dynamics in applied econo-

metric research and allowed the important distinction to be made between the short-run

and the long-run impacts of changes in income on consumption. Soon other researchers

followed Brown’s lead and employed his autoregressive specification in their empirical

work.

The next notable development in the area of dynamic specification was the distributed

lag model. Although the idea of distributed lags had been familiar to economists through

the pioneering work of Irving Fisher (1930) on the relationship between the nominal

interest rate and the expected inflation rate, its application in econometrics was not

seriously considered until the mid 1950s. The geometric distributed lag model was used

for the first time by Koyck (1954) in a study of investment. Koyck arrived at the geometric

distributed lag model via the adaptive expectations hypothesis. This same hypothesis

was employed later by Cagan (1956) in a study of demand for money in conditions of

hyperinflation, by Friedman (1957) in a study of consumption behaviour and by Nerlove

(1958a) in a study of the cobweb phenomenon. The geometric distributed lag model

was subsequently generalized by Solow (1960), Jorgenson (1966) and others, and was

extensively applied in empirical studies of investment and consumption behaviour. At

about the same time Almon (1965) provided a polynomial generalization of Fisher’s

(1937) arithmetic lag distribution which was later extended further by Shiller (1973).

Other forms of dynamic specification considered in the literature included the partial

adjustment model (Nerlove, 1958b; Eisner and Strotz, 1963) and the multivariate flexible

accelerator model (Treadway, 1971) and Sargan’s (1964) work on econometric time series

analysis which formed the basis of error correction and cointegration analysis that followed

next. Following the contributions of Champernowne (1960), Granger and Newbold (1974)

and Phillips (1986) the spurious regression problem was better understood, and paved

the way for the development of the theory of cointegration. For further details see Section

8.3 below.

5.3 Techniques for Short-term Forecasting

Concurrent with the development of dynamic modelling in econometrics there was also

a resurgence of interest in time-series methods, used primarily in short-term business

forecasting. The dominant work in this field was that of Box and Jenkins (1970), who,
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building on the pioneering works of Yule (1921, 1926), Slutsky (1927), Wold (1938),

Whittle (1963) and others, proposed computationally manageable and asymptotically

efficient methods for the estimation and forecasting of univariate autoregressive-moving

average (ARMA) processes. Time-series models provided an important and relatively

simple benchmark for the evaluation of the forecasting accuracy of econometric models,

and further highlighted the significance of dynamic specification in the construction of

time-series econometric models. Initially univariate time-series models were viewed as

mechanical ‘black box’ models with little or no basis in economic theory. Their use was

seen primarily to be in short-term forecasting. The potential value of modern time-series

methods in econometric research was, however, underlined in the work of Cooper (1972)

and Nelson (1972) who demonstrated the good forecasting performance of univariate

Box-Jenkins models relative to that of large econometric models. These results raised an

important question mark over the adequacy of large econometric models for forecasting as

well as for policy analysis. It was argued that a properly specified structural econometric

model should, at least in theory, yield more accurate forecasts than a univariate time-

series model. Theoretical justification for this view was provided by Zellner and Palm

(1974), followed by Trivedi (1975), Prothero and Wallis (1976), Wallis (1977) and others.

These studies showed that Box-Jenkins models could in fact be derived as univariate final

form solutions of linear structural econometric models. In theory, the pure time-series

model could always be embodied within the structure of an econometric model and in

this sense it did not present a ‘rival’ alternative to econometric modelling. This literature

further highlighted the importance of dynamic specification in econometric models and in

particular showed that econometric models that are out-performed by simple univariate

time-series models most probably suffer from specification errors.

The papers in Elliott, Granger and Timmermann (2006) provide excellent reviews of

recent developments in economic forecasting techniques.

6 A New Phase in Development of Econometrics

With the significant changes taking place in the world economic environment in the 1970s,

arising largely from the breakdown of the Bretton Woods system and the quadrupling of

oil prices, econometrics entered a new phase of its development. Mainstreammacroecono-

metric models built during the 1950s and 1960s, in an era of relative economic stability

with stable energy prices and fixed exchange rates, were no longer capable of adequately

capturing the economic realities of the 1970s. As a result, not surprisingly, macroecono-

metric models and the Keynesian theory that underlay them came under severe attack

from theoretical as well as from practical viewpoints. While criticisms of Tinbergen’s pi-

oneering attempt at macroeconometric modelling were received with great optimism and
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led to the development of new and sophisticated estimation techniques and larger and

more complicated models, the disenchantment with macroeconometric models in 1970’s

prompted a much more fundamental reappraisal of quantitative modelling as a tool of

forecasting and policy analysis.

At a theoretical level it was argued that econometric relations invariably lack the

necessary ‘microfoundations’, in the sense that they cannot be consistently derived from

the optimizing behaviour of economic agents. At a practical level the Cowles Commission

approach to the identification and estimation of simultaneous macroeconometric models

was questioned by Lucas and Sargent and by Sims, although from different viewpoints.

(Lucas, 1976, Lucas and Sargent (1981), and Sims (1980)). There was also a move

away frommacroeconometric models and towards microeconometric research with greater

emphasis on matching of econometrics with individual decisions.

It also became increasingly clear that Tinbergen’s paradigm where economic relations

were taken as given and provided by ‘economic theorist’ was not adequate. It was rarely

the case that economic theory could be relied on for a full specification of the econometric

model. (Leamer, 1978). The emphasis gradually shifted from estimation and inference

based on a given tightly parameterized specification to diagnostic testing, specification

searches, model uncertainty, model validation, parameter variations, structural breaks,

semi-parametric and nonparametric estimation. The choice of approach often governed by

the purpose of the investigation, the nature of the economic application, data availability,

computing and software technology.

What follows is a brief overview of some of the important developments. Given space

limitations there are inevitably significant gaps. These include the important contribu-

tions of Granger (1969), Sims (1972) and Engle and others (1983) on different concepts

of ‘causality’ and ‘exogeneity’, the literature on disequilibrium models (Quandt, 1982;

Maddala, 1983, 1986), random coefficient models (Swamy, 1970, Hsiao and Pesaran,

2006), unobserved time series models (Harvey, 1989), count regression models (Cameron

and Trivedi, 1986, 1998), the weak instrument problem (Stock, Wright and Yogo, 2002),

small sample theory (Phillips, 1983; Rothenberg, 1984), econometric models of auction

pricing (Hendricks and Porter, 1988, and Laffont, Ossard, and Vuong, 1995).

7 Rational Expectations and the Lucas Critique

Although the Rational Expectations Hypothesis (REH) was advanced by Muth in 1961,

it was not until the early 1970s that it started to have a significant impact on time-series

econometrics and on dynamic economic theory in general. What brought the REH into

prominence was the work of Lucas (1972, 1973), Sargent (1973), Sargent and Wallace

(1975) and others on the new classical explanation of the apparent breakdown of the
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Phillips curve. The message of the REH for econometrics was clear. By postulating that

economic agents form their expectations endogenously on the basis of the true model of

the economy and a correct understanding of the processes generating exogenous variables

of the model, including government policy, the REH raised serious doubts about the in-

variance of the structural parameters of the mainstream macroeconometric models in the

face of changes in government policy. This was highlighted in Lucas’s critique of macro-

econometric policy evaluation. By means of simple examples Lucas (1976) showed that in

models with rational expectations the parameters of the decision rules of economic agents,

such as consumption or investment functions, are usually a mixture of the parameters of

the agents’ objective functions and of the stochastic processes they face as historically

given. Therefore, Lucas argued, there is no reason to believe that the ‘structure’ of the

decision rules (or economic relations) would remain invariant under a policy intervention.

The implication of the Lucas critique for econometric research was not, however, that

policy evaluation could not be done, but rather than the traditional econometric models

and methods were not suitable for this purpose. What was required was a separation of

the parameters of the policy rule from those of the economic model. Only when these

parameters could be identified separately given the knowledge of the joint probability

distribution of the variables (both policy and non-policy variables), would it be possible

to carry out an econometric analysis of alternative policy options.

There have been a number of reactions to the advent of the rational expectations

hypothesis and the Lucas critique that accompanied it.

7.1 Model Consistent Expectations

The least controversial has been the adoption of the REH as one of several possible ex-

pectations formation hypotheses in an otherwise conventional macroeconometric model

containing expectational variables. In this context the REH, by imposing the appropriate

cross-equation parametric restrictions, ensures that ‘expectations’ and ‘forecasts’ gener-

ated by the model are consistent. In this approach the REH is regarded as a convenient

and effective method of imposing cross-equation parametric restrictions on time series

econometric models, and is best viewed as the ‘model-consistent’ expectations hypothe-

sis. There is now a sizeable literature on solution, identification, and estimation of linear

RE models. The canonical form of RE models with forward and backward components

is given by

yt = Ayt−1 +BE (yt+1 |Ft ) +wt,

where yt is a vector of endogenous variables, E (. |Ft ) is the expectations operator, Ft
the publicly available information at time t, and wt is a vector of forcing variables. For

example, log-linearized version of dynamic general equilibrium models (to be discussed)
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can all be written as a special case of this equation with plenty of restrictions on the

coefficient matrices A and B. In the typical case where wt are serially uncorrelated and

the solution of the RE model can be assumed to be unique the RE solution reduces to

the vector autoregression (VAR)

yt = Φyt−1 +Gwt,

where Φ and G are given in terms of the structural parameters:

BΦ2 −Φ+A = 0, and G =(I−BΦ)−1 .

The solution of the RE model can, therefore, be viewed as a restricted form of VAR pop-

ularized in econometrics by Sims (1980) as a response in macroeconometric modelling

to the rational expectations revolution. The nature of restrictions are determined by the

particular dependence of A and B on a few "deep" or structural parameters. For general

discussion of solution of RE models see, for example, Broze, Gouriéroux, and Szafarz

(1985) and Binder and Pesaran (1995). For studies of identification and estimation of

linear RE models see, for example, Hansen and Sargent (1980), Wallis (1980), Wick-

ens (1982) and Pesaran (1981,1987). These studies show how the standard econometric

methods can in principle be adapted to the econometric analysis of rational expectations

models.

7.2 Detection and Modelling of Structural Breaks

Another reaction to the Lucas critique has been to treat the problem of ‘structural change’

emphasized by Lucas as one more potential econometric ‘problem’. Clements and Hendry

(1998, 1999) provide a taxonomy of factors behind structural breaks and forecast failures.

Stock andWatson (1996) provide extensive evidence of structural break in macroeconomic

time series. It is argued that structural change can result from many factors and need

not be solely associated with intended or expected changes in policy. The econometric

lesson has been to pay attention to possible breaks in economic relations. There now

exists a large body of work on testing for structural change, detection of breaks (single as

well as multiple), modelling of break processes by means of piece-wise linear or non-linear

dynamic models. (Chow, 1960, Brown, Durbin and Evans, 1975, Nyblom, 1989, Andrews,

1993, Andrews and Ploberger, 1994, Bai and Perron, 1998, Pesaran and Timmermann,

2005b, 2006. See also the surveys by Stock (1994) and Clements and Hendry (2006).

The implications of breaks for short term and long term forecasting have also begun to

be addressed. McCulloch, and Tsay (1993) ,Koop and Potter (2004a, 2004b), Pesaran,

Pettenuzzo and Timmermann (2006).
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8 VAR Macroeconometrics

8.1 Unrestricted VARs

The Lucas critique of mainstream macroeconometric modelling also led some econometri-

cians, notably Sims (1980, 1982), to doubt the validity of the Cowles Commission style of

achieving identification in econometric models. He focussed his critique on macroecono-

metric models with a vector autoregressive (VAR) specification, which was relatively

simple to estimate and its use soon became prevalent in macroeconometric analysis. The

view that economic theory cannot be relied on to yield identification of structural models

was not new and had been emphasized in the past, for example, by Liu (1960). Sims

took this viewpoint a step further and argued that in presence of rational expectations

a priori knowledge of lag lengths is indispensable for identification, even when we have

distinct strictly exogenous variables shifting supply and demand schedules. (Sims, 1980,

p. 7). While it is true that the REH complicates the necessary conditions for the identi-

fication of structural models, the basic issue in the debate over identification still centres

on the validity of the classical dichotomy between exogenous and endogenous variables.

(Pesaran, 1981). In the context of closed economy macroeconometric models where all

variables are treated as endogenous other forms of identification of the structure will be

required. Initially, Sims suggested a recursive identification approach where the matrix of

contemporaneous effects were assumed to be lower (upper) triangular and the structural

shocks orthogonal. Other non-recursive identification schemes soon followed.

8.2 Structural VARs

One prominent example was the identification scheme developed in Blanchard and Quah

(1989) who distinguished between permanent and transitory shocks and attempted to

identify the structural models through long-run restrictions. For example, Blanchard

and Quah argued that the effect of a demand shock on real output should be temporary

(namely it should have a zero long run impact), whilst a supply shock should have a

permanent effect. This approach is known as ‘structural VAR’ (SVAR) and has been

used extensively in the literature. It continues to assume that structural shocks are

orthogonal, but uses a mixture of short-run and long-run restrictions to identify the

structural model. In their work Blanchard and Quah considered a bivariate VAR model

in real output and unemployment. They assumed real output to be integrated of order 1,

or I(1), and viewed unemployment as an I(0), or a stationary variable. This allowed them

to associate the shock to one of the equations as permanent, and the shock to the other

equation as transitory. In more general settings, such as the one analyzed by Gali (1992)

and Wickens and Motta (2001), where there are m endogenous variables and r long-run
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or cointegrating relations, the SVAR approach provides m(m− r) restrictions which are

not sufficient to fully identify the model, unless m = 2 and r = 1 which is the simple

bivariate model considered by Blanchard and Quah. (Pagan and Pesaran, 2006). In most

applications additional short term restrictions are required. More recently, attempts have

also been made to identify structural shocks by means of qualitative restrictions, such as

sign restrictions. Notable examples include Canova and de Nicolo (2002), Uhlig (2005)

and Peersman (2005).

The focus of the SVAR literature has been on impulse response analysis and forecast

error variance decomposition, with the aim of estimating the time profile of the effects of

monetary policy, oil price or technology shocks on output and inflation, and deriving the

relative importance of these shocks as possible explanations of forecast error variances at

different horizons. Typically such analysis is carried out with respect to a single model

specification and at most only parameter uncertainty is taken into account. (Kilian, 1998).

More recently the problem of model uncertainty, and its implications for impulse response

analysis and forecasting, has been recognized. Bayesian and classical approaches to model

and parameter uncertainty have been considered. Initially, Bayesian VAR models were

developed for use in forecasting as an effective shrinkage procedure in the case of high

dimensional VAR models. (Doan, Litterman and Sims, 1984, and Litterman, 1985). The

problem of model uncertainty in cointegrating VARs has been addressed in Garrett, Lee,

Pesaran and Shin (2003b, 2006), and Strachan and van Dijk ( 2006).

8.3 Structural Cointegrating VARs

This approach provides the SVAR with the decomposition of shocks into permanent and

transitory and gives economic content to the long-run or cointegrating relations that

underlie the transitory components. In the simple example of Blanchard and Quah this

task is trivially achieved by assuming real output to be I(1) and the unemployment rate

to be an I(0) variable. To have shocks with permanent effects some of the variables in the

VAR must be non-stationary. This provides a natural link between the SVAR and the

unit root and cointegration literature. Identification of the cointegrating relations can be

achieved by recourse to economic theory, solvency or arbitrage conditions. (Garrett, Lee,

Pesaran and Shin, 2003a). Also there are often long-run over-identifying restrictions that

can be tested. Once identified and empirically validated, the long-run relations can be

embodied within a VAR structure, and the resultant structural vector error correction

model identified using theory-based short-run restrictions. The structural shocks can be

decomposed into permanent and temporary components using either the multivariate

version of the Beveridge and Nelson (1981) decompositions, or the one more recently

proposed by Garrett, Robertson and Wright (2006).
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Two or more variables are said to be cointegrated if they are individually integrated

(or have a random walk component), but there exists a linear combination of them which

is stationary. The concept of cointegration was first introduced by Granger (1986) and

more formally developed in Engle and Granger (1987). Rigorous statistical treatments

followed in the papers by Johansen (1988, 1991) and Phillips (1991). Many further

developments and extensions have taken place with reviews provided in Johansen (1995),

Juselius (2006) and Garret, Lee, Pesaran and Shin (2006). The related unit root literature

is reviewed by Stock (1994) and Phillips and Xiao (1998).

8.4 MacroeconometricModels withMicroeconomic Foundations

For policy analysis macroeconometric models need to be based on decisions by indi-

vidual households, firms and governments. This is a daunting undertaking and can be

achieved only by gross simplification of the complex economic interconnections that exists

across millions of decision makers worldwide. Dynamic Stochastic General Equilibrium

(DSGE) modelling approach attempts to implement this task by focussing on optimal

decisions of a few representative agents operating with rational expectations under com-

plete learning. Initially, DSGE models were small and assumed complete markets with

instantaneous price adjustments, and as a result did not fit the macroeconomic time

series (Kim and Pagan, 1995). More recently, Smets and Wouters (2003) have shown

that DSGE models with sticky prices and wages along the lines developed by Christiano,

Eichenbaum and Evans (2005) are sufficiently rich to match most of the statistical fea-

tures of the main macro-economic time series. Moreover, by applying Bayesian estimation

techniques, these authors have shown that even relatively large models can be estimated

as a system. Bayesian DSGE models have also shown to perform reasonably level in

forecasting as compared to standard and Bayesian vector autoregressions. It is also pos-

sible to incorporate long run cointegrating relations within Bayesian DSGE models. The

problems of parameter and model uncertainty can also be readily accommodated using

data coherent DSGE models. Other extensions of the DSGE models to allow for learning,

regime switches, time variations in shock variances, asset prices, and multi-country inter-

actions are likely to enhance their policy relevance. (Del Negro and Schorfheide, 2004,

Del Negro, Schorfheide, Smets and Wouters, 2005, An and Schorfheide, 2006, Pesaran

and Smith, 2006). Further progress will also be welcome in the area of macroeconomic

policy analysis under model uncertainty, and robust policy making (Brock and Durlauf,

2006, Hansen and Sargent, 2006).
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9 Model and Forecast Evaluation

While in the 1950s and 1960s research in econometrics was primarily concerned with the

identification and estimation of econometric models, the dissatisfaction with econometrics

during the 1970s caused a shift of focus from problems of estimation to those of model

evaluation and testing. This shift has been part of a concerted effort to restore confidence

in econometrics, and has received attention from Bayesian as well as classical viewpoints.

Both these views reject the ‘axiom of correct specification’ which lies at the basis of most

traditional econometric practices, but differ markedly as how best to proceed.

It is generally agreed, by Bayesians as well as by non-Bayesians, that model evaluation

involves considerations other than the examination of the statistical properties of the

models, and personal judgements inevitably enter the evaluation process. Models must

meet multiple criteria which are often in conflict. They should be relevant in the sense

that they ought to be capable of answering the questions for which they are constructed.

They should be consistent with the accounting and/or theoretical structure within which

they operate. Finally, they should provide adequate representations of the aspects of

reality with which they are concerned. These criteria and their interaction are discussed in

Pesaran and Smith (1985b). More detailed breakdowns of the criteria of model evaluation

can be found in Hendry and Richard (1982) and McAleer, Pagan, and Volker (1985). In

econometrics it is, however, the criterion of ‘adequacy’ which is emphasized, often at the

expense of relevance and consistency.

The issue of model adequacy in mainstream econometrics is approached either as a

model selection problem or as a problem in statistical inference whereby the hypothesis

of interest is tested against general or specific alternatives. The use of absolute criteria

such as measures of fit/parsimony or formal Bayesian analysis based on posterior odds

are notable examples of model selection procedures, while likelihood ratio, Wald and

Lagrange multiplier tests of nested hypotheses and Cox’s centred log-likelihood ratio

tests of non-nested hypotheses are examples of the latter approach. The distinction

between these two general approaches basically stems from the way alternative models

are treated. In the case of model selection (or model discrimination) all the models under

consideration enjoy the same status and the investigator is not committed a priori to any

one of the alternatives. The aim is to choose the model which is likely to perform best with

respect to a particular loss function. By contrast, in the hypothesis-testing framework

the null hypothesis (or the maintained model) is treated differently from the remaining

hypotheses (or models). One important feature of the model-selection strategy is that its

application always leads to one model being chosen in preference to other models. But

in the case of hypothesis testing, rejection of all the models under consideration is not

ruled out when the models are non-nested. A more detailed discussion of this point is
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given in Pesaran and Deaton (1978).

Broadly speaking, classical approaches to the problem of model adequacy can be clas-

sified depending on how specific the alternative hypotheses are. These are the general

specification tests, the diagnostic tests, and the non-nested tests. The first of these, pio-

neered by Durbin (1954) and introduced in econometrics by Ramsey (1969), Wu (1973),

Hausman (1978), and subsequently developed further by White (1981, 1982) and Hansen

(1982), are designed for circumstances where the nature of the alternative hypothesis is

kept (sometimes intentionally) rather vague, the purpose being to test the null against a

broad class of alternatives. (The pioneering contribution of Durbin (1954) in this area has

been documented by Nakamura and Nakamura (1981)). Important examples of general

specification tests are Ramsey’s regression specification error test (RESET) for omitted

variables and/or misspecified functional forms, and the Durbin-Hausman-Wu test of mis-

specification in the context of measurement error models, and/or simultaneous equation

models. Such general specification tests are particularly useful in the preliminary stages

of the modelling exercise.

In the case of diagnostic tests, the model under consideration (viewed as the null

hypothesis) is tested against more specific alternatives by embedding it within a general

model. Diagnostic tests can then be constructed using the likelihood ratio, Wald or

Lagrange multiplier (LM) principles to test for parametric restrictions imposed on the

general model. The application of the LM principle to econometric problems is reviewed

in the papers by Breusch and Pagan (1980), Godfrey and Wickens (1982), Engle (1984).

An excellent review is provided in Godfrey (1988). Examples of the restrictions that may

be of interest as diagnostic checks of model adequacy include zero restrictions, parameter

stability, serial correlation, heteroskedasticity, functional forms, and normality of errors.

The distinction made here between diagnostic tests and general specification tests is more

apparent than real. In practice some diagnostic tests such as tests for serial correlation

can also be viewed as a general test of specification. Nevertheless, the distinction helps

to focus attention on the purpose behind the tests and the direction along which high

power is sought.

The need for non-nested tests arises when the models under consideration belong

to separate parametric families in the sense that no single model can be obtained from

the others by means of a suitable limiting process. This situation, which is particularly

prevalent in econometric research, may arise when models differ with respect to their

theoretical underpinnings and/or their auxiliary assumptions. Unlike the general specifi-

cation tests and diagnostic tests, the application of non-nested tests is appropriate when

specific but rival hypotheses for the explanation of the same economic phenomenon have

been advanced. Although non-nested tests can also be used as general specification tests,

they are designed primarily to have high power against specific models that are seriously
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entertained in the literature. Building on the pioneering work of Cox (1961, 1962), a

number of such tests for single equation models and systems of simultaneous equations

have been proposed. (Pesaran and Weeks, 2001).

The use of statistical tests in econometrics, however, is not a straightforward matter

and in most applications does not admit of a clear-cut interpretation. This is especially

so in circumstances where test statistics are used not only for checking the adequacy of a

given model but also as guides to model construction. Such a process of model construc-

tion involves specification searches of the type emphasized by Leamer (1978) and presents

insurmountable pre-test problems which in general tend to produce econometric models

whose ‘adequacy’ is more apparent than real. As a result, in evaluating econometric

models less reliance should be placed on those indices of model adequacy that are used

as guides to model construction, and more emphasis should be given to the performance

of models over other data sets and against rival models.

A closer link between model evaluation and the underlying decision problem is also

needed. Granger and Pesaran (2000a, 2000b) discuss this problem in the context of

forecast evaluation. A recent survey of forecast evaluation literature can be found in

West (2006). Pesaran and Skouras (2002) provide a review from a decision-theoretic

perspective.

The subjective Bayesian approach to the treatment of several models begins by as-

signing a prior probability to each model, with the prior probabilities summing to one.

Since each model is already endowed with a prior probability distribution for its parame-

ters and for the probability distribution of observable data conditional on its parameters,

there is then a complete probability distribution over the space of models, parameters,

and observable data. (No particular problems arise from non-nesting of models in this

framework.) This probability space can then be augmented with the distribution of an

object or vector of objects of interest. For example, in a macroeconomic policy setting the

models could include VARs,. DSGEs, and traditional large-scale macroeconomic models,

and the vector of interest might include future output growth, interest rates, inflation and

unemployment, whose distribution is implied by each of the models considered. Implicit

in this formulation is the conditional distribution of the vector of interest conditional on

the observed data. Technically, this requires the integration (or marginalization) of para-

meters in each model as well as the models themselves. As a practical matter this usually

proceeds by first computing the probability of each model conditional on the data, and

then using these probabilities as weights in averaging the posterior distribution of the

vector of interest in each model. It is not necessary to choose one particular model, and

indeed to do so would be suboptimal. The ability to actually carry out this simultane-

ous consideration of multiple models has been enhanced greatly by recent developments

in simulation methods, surveyed in Section 15 below; recent texts by Koop (2003), Lan-
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caster (2004) and Geweke (2005) provide technical details. Geweke and Whiteman (2006)

specifically outline these methods in the context of economic forecasting.

10 Microeconometrics: An Overview

Partly as a response to the dissatisfaction with macroeconometric time-series research and

partly in view of the increasing availability of micro-data and computing facilities, over

the past two decades significant advances have been made in the analysis of micro-data.

Important micro-data sets have become available on households and firms especially in the

United States in such areas as housing, transportation, labour markets and energy. These

data sets include various longitudinal surveys (e.g. University of Michigan Panel Study of

Income Dynamics and Ohio State National Longitudinal Study Surveys), cross-sectional

surveys of family expenditures, population and labour force surveys. This increasing

availability of micro-data, while opening up new possibilities for analysis, has also raised

a number of new and interesting econometric issues primarily originating from the nature

of the data. The errors of measurement are likely to be important in the case of some

micro data sets. The problem of the heterogeneity of economic agents at the micro

level cannot be assumed away as readily as is usually done in the case of macro-data by

appealing to the idea of a ‘representative’ firm or a ‘representative’ household.

The nature of micro-data, often being qualitative or limited to a particular range

of variations, has also called for new econometric models and techniques. Examples

include categorical survey responses (‘up’, ‘same’ or ‘down’), and censored or truncated

observations. The models and issues considered in the micro-econometric literature are

wide ranging and include fixed and random effect panel data models (e.g. Mundlak,

1961, 1978), logit and probit models and their multinominal extensions, discrete choice or

quantal response models (Manski and McFadden, 1981), continuous time duration models

(Heckman and Singer, 1984), and micro-econometric models of count data (Hausman et

al., 1984 and Cameron and Trivedi, 1986).

The fixed or random effect models provide the basic statistical framework and will

be discussed in more detailed below. Discrete choice models are based on an explicit

characterization of the choice process and arise when individual decision makers are

faced with a finite number of alternatives to choose from. Examples of discrete choice

models include transportation mode choice (Domenich andMcFadden, 1975), labour force

participation (Heckman and Willis, 1977), occupation choice (Boskin, 1974), job or firm

location (Duncan 1980), and models with neighborhood effects (Brock and Durlauf, 2002).

Limited-dependent variables models are commonly encountered in the analysis of survey

data and are usually categorized into truncated regression models and censored regression

models. If all observations on the dependent as well as on the exogenous variables are
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lost when the dependent variable falls outside a specified range, the model is called

truncated, and, if only observations on the dependent variable are lost, it is called censored.

The literature on censored and truncated regression models is vast and overlaps with

developments in other disciplines, particularly in biometrics and engineering. Maddala

(1983, ch. 6) provides a survey.

The censored regression model was first introduced into economics by Tobin (1958)

in his pioneering study of household expenditure on durable goods where he explicitly

allowed for the fact that the dependent variable, namely the expenditure on durables,

cannot be negative. The model suggested by Tobin and its various generalizations are

known in economics as Tobit models and are surveyed in detail by Amemiya (1984), and

more recently in Cameron and Trivedi (2005, ch. 14).

Continuous time duration models, also known as survival models, have been used in

analysis of unemployment duration, the period of time spent between jobs, durability of

marriage, etc. Application of survival models to analyse economic data raises a number

of important issues resulting primarily from the non-controlled experimental nature of

economic observations, limited sample sizes (i.e. time periods), and the heterogeneous

nature of the economic environment within which agents operate. These issues are clearly

not confined to duration models and are also present in the case of other microeconometric

investigations that are based on time series or cross section or panel data.

Partly in response to the uncertainties inherent in econometric results based on non-

experimental data, there has also been a significant move towards social experimentation,

and experimental economics in general. A social experiment aims at isolating the effects

of a policy change (or a treatment effect) by comparing the consequences of an exogenous

variation in the economic environment of a set of experimental subjects known as the

‘treatment’ group with those of a ‘control’ group that have not been subject to the

change. The basic idea goes back to the early work of R.A. Fisher (1928) on randomized

trials and have been applied extensively in agricultural and biomedical research. The

case for social experimentation in economics is discussed in Burtless (1995). Hausman

and Wise (1985) and Heckman and Smith (1995) consider a number of actual social

experiments carried out in the US and discuss their scope and limitations.

Experimental economics tries to avoid some of the limitations of working with ob-

servations obtained from natural or social experiments by using data from laboratory

experiments to test economic theories by fixing some of the factors and identifying the

effects of other factors in a way that allows ceteris paribus comparisons. A wide range of

topics and issues are covered in this literature such as individual choice behaviour, bar-

gaining, provision of public goods, theories of learning, auction markets, and behavioral

finance. A comprehensive review of major areas of experimental research in economics is

provided in Kagel and Roth (1995).
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These developments have posed new problems and challenges in the areas of exper-

imental design, statistical methods and policy analysis. Another important aspect of

recent developments in microeconometric literature relates to the use of microanalytic

simulation models for policy analysis and evaluation to reform packages in areas such

as health care, taxation, social security systems, and transportation networks. Cameron

and Trivedi (2005) review the recent developments in methods and application of micro-

econometrics. Some of these topics will be discussed in more detail below.

11 Econometrics of Panel Data

Panel data models are used in many areas of econometrics, although initially they were

developed primarily for the analysis of micro behavior, and focussed on panels formed

from cross-section ofN individual households or firms surveyed for T successive time

periods. These types of panels are often refereed to as ‘micropanels’. In social and

behavioral sciences they are also known as longitudinal data or panels. The literature

on micropanels typically takes N to be quite large (in hundreds) and T rather small,

often less than 10. But more recently, with the increasing availability of financial and

macroeconomic data, analyses of panels where both N and T are relatively large have

also been considered. Examples of such data sets include time series of company data

from Datastream, country data from International Financial Statistics or the Penn World

Table, and county and state data from national statistical offices. There are also pseudo

panels of firms and consumers composed of repeated cross sections that cover cross section

units that are not necessarily identical but are observed over relatively long time periods.

Since the available cross section observations do not (necessarily) relate to the same

individual unit, some form of grouping of the cross section units is needed. Once the

grouping criteria are set, the estimation can proceed using fixed effects estimation applied

to group averages if the number of observations per group is sufficiently large, otherwise

possible measurement errors of the group averages also need to be taken into account.

Deaton (1985) pioneered the econometric analysis of pseudo panels. Verbeek (2006)

provides a recent review.

Use of panels can enhance the power of empirical analysis and allows estimation of

parameters that might not have been identified along the time or the cross section dimen-

sions alone. These benefits come at a cost. In the case of linear panel data models with a

short time span the increased power is usually achieved under assumptions of parameter

homogeneity and error cross section independence. Short panels with autocorrelated dis-

turbances also pose a new identification problem, namely how to distinguished between

dynamics and state dependence. (Arellano, 2003, ch. 5). In panels with fixed effects

the homogeneity assumption is relaxed somewhat by allowing the intercepts in the panel
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regressions to vary freely over the cross section units, but continues to maintain the error

cross section independence assumption. The random coefficient specification of Swamy

(1970) further relaxes the slope homogeneity assumption, and represents an important

generalization of the random effects model (Hsiao and Pesaran, 2006). In micropanels

where T is small cross section dependence can be dealt with if it can be attributed to

spatial (economic or geographic) effects. Anselin (1988) and Anselin, Le Gallo and Jaye

(2006) provide surveys of the literature on spatial econometrics. A number of studies

have also used measures such as trade or capital flows to capture economic distance, as

in Conley and Topa (2002), Conley and Dupor (2003), and Pesaran, Schuermann and

Weiner (2004).

Allowing for dynamics in panels with fixed effects also present additional difficulties;

for example the standard within-group estimator will be inconsistent unless T → ∞.
(Nickell, 1981). In linear dynamic panels the incidental parameter problem (the unob-

served heterogeneity) can be resolved by first differencing the model and then estimating

the resultant first-differened specification by instrumental variables or by the method of

transformed likelihood. (Anderson and Hsiao, 1981,1982, Holtz-Eakin, Newey and Rosen,

1988, Arellano and Bond, 1991, and Hsiao, Pesaran and Tahmiscioglu, 2002). A similar

procedure can also be followed in the case of short T panel VARs. (Binder, Hsiao and

Pesaran, 2005). But other approaches are needed for non-linear panel data models. See,

for example, Honore and Kyriazidou (2000) and review of the literature on non-linear

panels in Arellano and Honoré (2001). Relaxing the assumption of slope homogeneity in

dynamic panels is also problematic, and neglecting to take account of slope heterogeneity

will lead to inconsistent estimators. In the presence of slope heterogeneity Pesaran and

Smith (1995) show that the within group estimator remains inconsistent even if both N

and T →∞. A Bayesian approach to estimation of micro dynamic panels with random
slope coefficients is proposed in Hsiao, Pesaran and Tahmiscioglu (1999).

To deal with general dynamic specifications, possible slope heterogeneity and error

cross section dependence large T and N panels are required. In the case of such large

panels it is possible to allow for richer dynamics and parameter heterogeneity. Cross sec-

tion dependence of errors can also be dealt with using residual common factor structures.

These extensions are particularly relevant to the analysis of purchasing power parity hy-

pothesis (O’Connell, 1998, Imbs, Mumtaz, Ravn and Rey, 2005, Pedroni, 2001, Smith,

Leybourne, Kim and Newbold, 2004), output convergence (Durlauf, Johnson, and Tem-

ple, 2005, Pesaran, 2006c), the Fisher effect (Westerlund, 2005), house price convergence

(Holly, Pesaran, and Yamagata, 2006), regional migration (Fachin, 2006), and uncovered

interest parity (Moon and Perron, 2006). The econometric methods developed for large

panels has to take into account the relationship between the increasing number of time

periods and cross section units (Phillips and Moon 1999). The relative expansion rates
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of N and T could have important consequences for the asymptotic and small sample

properties of the panel estimators and tests. This is because fixed T estimation bias tend

to magnify with increases in the cross section dimension, and it is important that any

bias in the T dimension is corrected in such a way that its overall impact disappears as

both N and T →∞, jointly.
The first generation panel unit root tests proposed, for example, by Levin, Lin and

Chu (2002) and Im, Pesaran and Shin (2003) allowed for parameter heterogeneity but

assumed errors were cross sectionally independent. More recently, panel unit root tests

that allow for error cross section dependence have been proposed by Bai and Ng (2004),

Moon and Perron (2004) and Pesaran (2006b). As compared to panel unit root tests,

the analysis of cointegration in panels is still at an early stages of its developments. So

far the focus of the panel cointegration literature has been on residual based approaches,

although there has been a number of attempts at the development of system approaches

as well. (Pedroni, 2004). But once cointegration is established the long-run parameters

can be estimated efficiently using techniques similar to the ones proposed in the case of

single time series models. These estimation techniques can also be modified to allow for

error cross section dependence. (Pesaran, 2006a). Surveys of the panel unit root and

cointegration literature are provided by Banerjee (1999), Baltagi and Kao (2000), Choi

(2006) and Breitung and Pesaran (2006).

The micro and macro panel literature is vast and growing. For the analysis of many

economic problems further progress is needed in the analysis of non-linear panels, testing

and modelling of error cross section dependence, dynamics, and neglected heterogeneity.

For general reviews of panel data econometrics see Arellano (2003), Baltagi (2005), Hsiao

(2003) and Wooldridge (2002).

12 Nonparametric and Semiparametric Estimation

Much empirical research is concerned with estimating conditional mean, median, or haz-

ard functions. For example, a wage equation gives the mean, median or, possibly, some

other quantile of wages of employed individuals conditional on characteristics such as

years of work experience and education. A hedonic price function gives the mean price

of a good conditional on its characteristics. The function of interest is rarely known a

priori and must be estimated from data on the relevant variables. For example, a wage

equation is estimated from data on the wages, experience, education and, possibly, other

characteristics of individuals. Economic theory rarely gives useful guidance on the form

(or shape) of a conditional mean, median, or hazard function. Consequently, the form of

the function must either be assumed or inferred through the estimation procedure.

The most frequently used estimation methods assume that the function of interest
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is known up to a set of constant parameters that can be estimated from data. Models

in which the only unknown quantities are a finite set of constant parameters are called

parametric. A linear model that is estimated by ordinary least squares is a familiar and

frequently used example of a parametric model. Indeed, linear models and ordinary least

squares have been the workhorses of applied econometrics since its inception. It is not

difficult to see why. Linear models and ordinary least squares are easy to work with

both analytically and computationally, and the estimation results are easy to interpret.

Other examples of widely used parametric models are binary logit and probit models if

the dependent variable is binary (e.g., an indicator of whether an individual is employed

or not or whether a commuter uses automobile or public transit for a trip to work) and

the Weibull hazard model if the dependent variable is a duration (e.g., the duration of a

spell of employment or unemployment).

Although parametric models are easy to work with, they are rarely justified by theo-

retical or other a priori considerations and often fit the available data badly. Horowitz

(2001), Horowitz and Savin (2001), Horowitz and Lee (2002), and Pagan and Ullah (1999)

provide examples. The examples also show that conclusions drawn from a convenient but

incorrectly specified model can be very misleading.

Of course, applied econometricians are aware of the problem of specification error.

Many investigators attempt to deal with it by carrying out a specification search in which

several different models are estimated and conclusions are based on the one that appears

to fit the data best. Specification searches may be unavoidable in some applications, but

they have many undesirable properties. There is no guarantee that a specification search

will include the correct model or a good approximation to it. If the search includes the

correct model, there is no guarantee that it will be selected by the investigator’s model

selection criteria. Moreover, the search process invalidates the statistical theory on which

inference is based.

Given this situation, it is reasonable to ask whether conditional mean and other

functions of interest in applications can be estimated nonparametrically, that is without

making a priori assumptions about their functional forms. The answer is clearly yes in

a model whose explanatory variables are all discrete. If the explanatory variables are

discrete, then each set of values of these variables defines a data cell. One can estimate

the conditional mean of the dependent variable by averaging its values within each cell.

Similarly, one can estimate the conditional median cell by cell.

If the explanatory variables are continuous, they cannot be grouped into cells. Nonethe-

less, it is possible to estimate conditional mean and median functions that satisfy mild

smoothness conditions without making a priori assumptions about their shapes. Tech-

niques for doing this have been developed mainly in statistics, beginning with Nadaraya’s

(1964) andWatson’s (1964) nonparametric estimator of a conditional mean function. The
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Nadaraya-Watson estimator, which is also called a kernel estimator, is a weighted aver-

age of the observed values of the dependent variable. More specifically, suppose that the

dependent variable is Y , the explanatory variable is X, and the data consist of obser-

vations {Yi, Xi : i = 1, ..., n}. Then the Nadaraya-Watson estimator of the mean of Y
at X = x is a weighted average of the Yi’s. Yi’s corresponding to Xi’s that are close

to x get more weight than do Yi’s corresponding to Xi’s that are far from x. The sta-

tistical properties of the Nadaraya-Watson estimator have been extensively investigated

for both cross-sectional and time-series data, and the estimator has been widely used

in applications. For example, Blundell, Browning and Crawford (2003) used kernel esti-

mates of Engel curves in an investigation of the consistency of household-level data and

revealed preference theory. Hausman and Newey (1995) used kernel estimates of demand

functions to estimate the equivalent variation for changes in gasoline prices and the dead-

weight losses associated with increases in gasoline taxes. Kernel-based methods have also

been developed for estimating conditional quantile and hazard functions.

There are other important nonparametric methods for estimating conditional mean

functions. Local linear estimation and series or sieve estimation are especially useful in

applications. Local linear estimation consists of estimating the mean of Y at X = x by

using a form of weighted least squares to fit a linear model to the data. The weights

are such that observations (Yi, Xi) for which Xi is close to x receive more weight than

do observations for which Xi is far from x. In comparison to the Nadaraya-Watson

estimator, local linear estimation has important advantages relating to bias and behavior

near the boundaries of the data. These are discussed in the book by Fan and Gijbels

(1996), among other places.

A series estimator begins by expressing the true conditional mean (or quantile) func-

tion as an infinite series expansion using basis functions such as sines and cosines, or-

thogonal polynomials, or splines. The coefficients of a truncated version of the series are

then estimated by ordinary least squares. The statistical properties of series estimators

are described by Newey (1997). Hausman and Newey (1995) give an example of their use

in an economic application.

Nonparametric models and estimates essentially eliminate the possibility of misspec-

ification of a conditional mean or quantile function (that is, they consistently estimate

the true function), but they have important disadvantages that limit their usefulness in

applied econometrics. One important problem is that the precision of a nonparametric

estimator decreases rapidly as the dimension of the explanatory variable X increases.

This phenomenon is called the curse of dimensionality. It can be understood most easily

by considering the case in which the explanatory variables are all discrete. Suppose the

data contain 500 observations of Y and X. Suppose, further, that X is a K-component

vector and that each component can take five different values. Then the values of X gen-
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erate 5K cells. If K = 4, which is not unusual in applied econometrics, then there are 625

cells, or more cells than observations. Thus, estimates of the conditional mean function

are likely to be very imprecise for most cells because they will contain few observations.

Moreover, there will be at least 125 cells that contain no data and, consequently, for

which the conditional mean function cannot be estimated at all. It has been proved that

the curse of dimensionality is unavoidable in nonparametric estimation. As a result of it,

impracticably large samples are usually needed to obtain acceptable estimation precision

if X is multidimensional.

Another problem is that nonparametric estimates can be difficult to display, com-

municate, and interpret when X is multidimensional. Nonparametric estimates do not

have simple analytic forms. If X is one- or two-dimensional, then the estimate of the

function of interest can be displayed graphically, but only reduced-dimension projections

can be displayed when X has three or more components. Many such displays and much

skill in interpreting them can be needed to fully convey and comprehend the shape of an

estimate.

A further problem with nonparametric estimation is that it does not permit extrap-

olation. For example, in the case of a conditional mean function it does not provide

predictions of the mean of Y at values of x that are outside of the range of the data

on X. This is a serious drawback in policy analysis and forecasting, where it is often

important to predict what might happen under conditions that do not exist in the avail-

able data. Finally, in nonparametric estimation, it can be difficult to impose restrictions

suggested by economic or other theory. Matzkin (1994) discusses this issue.

The problems of nonparametric estimation have led to the development of so-called

semiparametric methods that offer a compromise between parametric and nonparamet-

ric estimation. Semiparametric methods make assumptions about functional form that

are stronger than those of a nonparametric model but less restrictive than the assump-

tions of a parametric model, thereby reducing (though not eliminating) the possibility

of specification error. Semiparametric methods permit greater estimation precision than

do nonparametric methods when X is multidimensional. Semiparametric estimation re-

sults are usually easier to display and interpret than are nonparametric ones and provide

limited capabilities for extrapolation.

In econometrics, semiparametric estimation began with Manski’s (1975, 1985) and

Cosslett’s (1983) work on estimating discrete-choice random-utility models. McFadden

had introduced multinomial logit random utility models. These models assume that the

random components of the utility function are independently and identically distributed

with the Type I extreme value distribution. The resulting choice model is analytically

simple but has properties that are undesirable in many applications (e.g., the well-known

independence-of-irrelevant-alternatives property). Moreover, estimators based on logit
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models are inconsistent if the distribution of the random components of utility is not

Type I extreme value. Manski (1975, 1985) and Cosslett (1983) proposed estimators

that do not require a priori knowledge of this distribution. Powell’s (1984, 1986) least

absolute deviations estimator for censored regression models is another early contribution

to econometric research on semiparametric estimation. This estimator was motivated

by the observation that estimators of (parametric) Tobit models are inconsistent if the

underlying normality assumption is incorrect. Powell’s estimator is consistent under very

weak distributional assumptions.

Semiparametric estimation has continued to be an active area of econometric research.

Semiparametric estimators have been developed for a wide variety of additive, index, par-

tially linear, and hazard models, among others. These estimators all reduce the effective

dimension of the estimation problem and overcome the curse of dimensionality by making

assumptions that are stronger than those of fully nonparametric estimation but weaker

than those of a parametric model. The stronger assumptions also give the models limited

extrapolation capabilities. Of course, these benefits come at the price of increased risk

of specification error, but the risk is smaller than with simple parametric models. This

is because semiparametric models make weaker assumptions than do parametric models

and contain simple parametric models as special cases.

Semiparametric estimation is also an important research field in statistics, and it has

led to much interaction between statisticians and econometricians. The early statistics

and biostatistics research that is relevant to econometrics was focused on survival (dura-

tion) models. Cox’s (1972) proportional hazards model and the Buckley and James (1979)

estimator for censored regression models are two early examples of this line of research.

Somewhat later, Stone (1985) showed that a nonparametric additive model can overcome

the curse of dimensionality. Since then, statisticians have contributed actively to research

on the same classes of semiparametric models that econometricians have worked on.

13 Theory-Based Empirical Models

Many econometric models are connected to economic theory only loosely or through es-

sentially arbitrary parametric assumptions about, say, the shapes of utility functions. For

example, a logit model of discrete choice assumes that the random components of utility

are independently and identically distributed with the Type I extreme value distribution.

In addition, it is frequently assumed that the indirect utility function is linear in prices

and other characteristics of the alternatives. Because economic theory rarely, if ever,

yields a parametric specification of a probability model, it is worth asking whether the-

ory provides useful restrictions on the specification of econometric models and whether

models that are consistent with economic theory can be estimated without making non-
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theoretical parametric assumptions. The answers to these questions depend on the details

of the setting being modeled.

In the case of discrete-choice, random-utility models, the inferential problem is to esti-

mate the distribution of (direct or indirect) utility conditional on observed characteristics

of individuals and the alternatives among which they choose. More specifically, in applied

research one usually is interested in estimating the systematic component of utility (that

is, the function that gives the mean of utility conditional on the explanatory variables)

and the distribution of the random component of utility. Discrete-choice is present in a

wide range of applications, so it is important to know whether the systematic component

of utility and the distribution of the ransom component can be estimated nonparametri-

cally, thereby avoiding the non-theoretical distributional and functional form assumptions

that are required by parametric models. The systematic component and distribution of

the random component cannot be estimated unless they are identified. However, eco-

nomic theory places only weak restrictions on utility functions (e.g., shape restrictions

such as monotonicity, convexity, and homogeneity), so the classes of conditional mean

and utility functions that satisfy the restrictions are large. Indeed, it is not difficult to

show that observations of individuals’ choices and the values of the explanatory variables,

by themselves, do not identify the systematic component of utility and the distribution

of the random component without making assumptions that shrink the class of allowed

functions.

This issue has been addressed in a series of papers by Matzkin that are summarized in

Matzkin (1994). Matzkin gives conditions under which the systematic component of util-

ity and the distribution of the random component are identified without restricting either

to a finite-dimensional parametric family. Matzkin also shows how these functions can

be estimated consistently when they are identified. Some of the assumptions required for

identification may be undesirable in applications. Moreover, Manski (1988) and Horowitz

(1998) have given examples in which infinitely many combinations of the systematic com-

ponent of utility and distribution of the random component are consistent with a binary

logit specification of choice probabilities. Thus, discrete-choice, random-utility models

can be estimated under assumptions that are considerably weaker than those of, say,

logit and probit models, but the systematic component of utility and the distribution

of the random component cannot be identified using the restrictions of economic theory

alone. It is necessary to make additional assumptions that are not required by economic

theory and, because they are required for identification, cannot be tested empirically.

Models of market-entry decisions by oligopolistic firms present identification issues

that are closely related to those in discrete-choice, random utility models. Berry and

Tamer (2005) explain the identification problems and approaches to resolving them.

The situation is different when the economic setting provides more information about
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the relation between observables and preferences than is the case in discrete-choice mod-

els. This happens in models of certain kinds of auctions, thereby permitting nonpara-

metric estimation of the distribution of values for the auctioned object. An example is a

first-price, sealed bid auction within the independent private values paradigm. Here, the

problem is to infer the distribution of bidders’ values for the auctioned object from ob-

served bids. A game-theory model of bidders’ behavior provides a characterization of the

relation between bids and the distribution of private values. Guerre, Perrigne, and Vuong

(2000) showed that this relation nonparametrically identifies the distribution of values

if the analyst observes all bids and certain other mild conditions are satisfied. Guerre,

Perrigne, and Vuong (2000) also showed how to carry out nonparametric estimation of

the value distribution.

Dynamic decision models and equilibrium job search models are other examples of

empirical models that are closely connected to economic theory, though they also rely on

non-theoretical parametric assumptions. In a dynamic decision model, an agent makes

a certain decision repeatedly over time. For example, an individual may decide each

year whether to retire or not. The optimal decision depends on uncertain future events

(e.g., the state of one’s future health) whose probabilities may change over time (e.g.,

the probability of poor health increases as one ages) and depend on the decision. In

each period, the decision of an agent who maximizes expected utility is the solution to a

stochastic, dynamic programming problem. A large body of research, much of which is

reviewed by Rust (1994), shows how to specify and estimate econometric models of the

utility function (or, depending on the application, cost function), probabilities of relevant

future events, and the decision process.

An equilibrium search model determines the distributions of job durations and wages

endogenously. In such a model, a stochastic process generates wage offers. An unemployed

worker accepts an offer if it exceeds his reservation wage. An employed worker accepts

an offer if it exceeds his current wage. Employers choose offers to maximize expected

profits. Among other things, an equilibrium search model provides an explanation for

why seemingly identical workers receive different wages. The theory of equilibrium search

models is described in Albrecht and Axell (1984), Mortensen (1990), and Burdett and

Mortensen (1998). There is a large body of literature on the estimation of these models.

Bowlus, Kiefer, and Neumann (2001) provide a recent example with many references.

14 The Bootstrap

The exact, finite-sample distributions of econometric estimators and test statistics can

rarely be calculated in applications. This is because except in special cases and under

restrictive assumptions (e.g., the normal linear model), finite sample distributions de-
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pend on the unknown distribution of the population from which the data were sampled.

This problem is usually dealt with by making use of large-sample (asymptotic) approxi-

mations. A wide variety of econometric estimators and test statistics have distributions

that are approximately normal or chi-square when the sample size is large, regardless of

the population distribution of the data. The approximation error decreases to zero as

the sample size increases. Thus, asymptotic approximations can to be used to obtain

confidence intervals for parameters and critical values for tests when the sample size is

large.

It has long been known, however, that the asymptotic normal and chi-square ap-

proximations can be very inaccurate with the sample sizes encountered in applications.

Consequently, there can be large differences between the true and nominal coverage prob-

abilities of confidence intervals and between the true and nominal probabilities with which

a test rejects a correct null hypothesis. One approach to dealing with this problem is to use

higher-order asymptotic approximations such as Edgeworth or saddlepoint expansions.

These received much research attention during 1970s and 1980s, but analytic higher-order

expansions are rarely used in applications because of their algebraic complexity.

The bootstrap, which is due to Efron (1979), provides a way to obtain sometimes

spectacular improvements in the accuracy of asymptotic approximations while avoiding

algebraic complexity. The bootstrap amounts to treating the data as if they were the

population. In other words, it creates a pseudo-population whose distribution is the em-

pirical distribution of the data. Under sampling from the pseudo-population, the exact

finite sample distribution of any statistic can be estimated with arbitrary accuracy by

carrying out a Monte Carlo simulation in which samples are drawn repeatedly from the

empirical distribution of the data. That is, the data are repeatedly sampled randomly

with replacement. Since the empirical distribution is close to the population distribu-

tion when the sample size is large, the bootstrap consistently estimates the asymptotic

distribution of a wide range of important statistics. Thus, the bootstrap provides a way

to replace analytic calculations with computation. This is useful when the asymptotic

distribution is difficult to work with analytically.

More importantly, the bootstrap provides a low-order Edgeworth approximation to

the distribution of a wide variety of asymptotically standard normal and chi-square sta-

tistics that are used in applied research. Consequently, the bootstrap provides an ap-

proximation to the finite-sample distributions of such statistics that is more accurate

than the asymptotic normal or chi-square approximation. The theoretical research lead-

ing to this conclusion was carried out by statisticians, but the bootstrap’s importance

has been recognized in econometrics and there is now an important body of econometric

research on the topic. In many settings that are important in applications, the bootstrap

essentially eliminates errors in the coverage probabilities of confidence intervals and the
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rejection probabilities of tests. Thus, the bootstrap is a very important tool for applied

econometricians.

There are, however, situations in which the bootstrap does not estimate a statistic’s

asymptotic distribution consistently. Manski’s (1975, 1985) maximum score estimator of

the parameters of a binary response model is an example. All known cases of bootstrap

inconsistency can be overcome through the use of subsampling methods. In subsampling,

the distribution of a statistic is estimated by carrying out a Monte Carlo simulation in

which the subsamples of the data are drawn repeatedly. The subsamples are smaller than

the original data set, and they can be drawn randomly with or without replacement.

Subsampling provides estimates of asymptotic distributions that are consistent under

very weak assumptions, though it is usually less accurate than the bootstrap when the

bootstrap is consistent.

15 Program Evaluation and Treatment Effects

Program evaluation is concerned with estimating the causal effect of a treatment or

policy intervention on some population. The problem arises in many disciplines, including

biomedical research (e.g., the effects of a new medical treatment) and economics (e.g.,

the effects of job training or education on earnings). The most obvious way to learn the

effects of treatment on a group of individuals by observing each individual’s outcome in

the both the treated and the untreated states. This is not possible in practice, however,

because one virtually always observes any given individual in either the treated state or

the untreated state but not both. This does not matter if the individuals who receive

treatment are identical to those who do not, but that rarely happens. For example,

individuals who choose to take a certain drug or whose physicians prescribe it for them

may be sicker than individuals who do not receive the drug. Similarly, people who choose

to obtain high levels of education may be different from others in ways that affect future

earnings.

This problem has been recognized since at least the time of R.A. Fisher. In principle, it

can be overcome by assigning individuals randomly to treatment and control groups. One

can then estimate the average effect of treatment by the difference between the average

outcomes of treated and untreated individuals. This random assignment procedure has

become something of a gold standard in the treatment effects literature. Clinical trials

use random assignment, and there have been important economic and social experiments

based on this procedure. But there are also serious practical problems. First, random

assignment may not be possible. For example, one cannot assign high-school students

randomly to receive a university education or not. Second, even if random assignment

is possible, post-randomization events may disrupt the effects of randomization. For
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example, individuals may drop out of the experiment or take treatments other than the

one to which they are assigned. Both of these things may happen for reasons that are

related to the outcome of interest. For example, very ill members of a control group may

figure out that they are not receiving treatment and find a way to obtain the drug being

tested. In addition, real-world programs may not operate the way that experimental ones

do, so real-world outcomes may not mimic those found in an experiment, even if nothing

has disrupted the randomization.

Much research in econometrics, statistics, and biostatistics has been aimed at devel-

oping methods for inferring treatment effects when randomization is not possible or is

disrupted by post-randomization events. In econometrics, this research dates back at

least to Gronau (1974) and Heckman (1974). The fundamental problem is to identify

the effects of treatment or, in less formal terms, to separate the effects of treatment from

those of other sources of differences between the treated and untreated groups. Manski

(1995), among many others, discusses this problem. Large literatures in statistics, biosta-

tistics, and econometrics are concerned with developing identifying assumptions that are

reasonable in applied settings. However, identifying assumptions are not testable empir-

ically and can be controversial. One widely accepted way of dealing with this problem is

to conduct a sensitivity analysis in which the sensitivity of the estimated treatment effect

to alternative identifying assumptions is assessed. Another possibility is to forego contro-

versial identifying assumptions and to find the entire set of outcomes that are consistent

with the joint distribution of the observed variables. This approach, which has been

pioneered by Manski and several co-investigators, is discussed in Manski (1995, 2003),

among other places. Hotz, Mullin, and Sanders (1997) provide an interesting application

of bounding methods to measuring the effects of teen pregnancy on the labor market

outcomes of young women.

16 Integration and simulation methods in economet-

rics

The integration problem is endemic in economic modeling, arising whenever economic

agents do not observe random variables and the behavior paradigm is the maximization

of expected utility. The econometrician inherits this problem in the expression of the

corresponding econometric model, even before taking up inference and estimation. The

issue is most familiar in dynamic optimization contexts, where it can be addressed by

a variety of methods. Taylor and Uhlig (1990) present a comprehensive review of these

methods, and for later innovations see Keane and Wolpin (1994), Rust (1997) and Santos

and Vigo-Aguiar (1998).
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In econometrics the problem is more pervasive than in economic modeling, because it

arises, in addition, whenever economic agents observe random variables that the econo-

metrician does not. For example, the economic agent may form expectations conditional

on an information set not entirely accessible to the econometrician, such as personal

characteristics or confidential information. Another example arises in discrete choice

settings, where utilities of alternatives are never observed and the prices of alternatives

often are not. In these situations the economic model provides a probability distribution

of outcomes conditional on three classes of objects: observed variables, available to the

econometrician; latent variables, unobserved by the econometrician; and parameters or

functions describing the preferences and decision-making environment of the economic

agent. The econometrician typically seeks to learn about the parameters or functions

given the observed variables.

There are several ways of dealing with this task. Two approaches that are closely

related and widely used in the econometrics literature generate integration problems.

The first is to maintain a distribution of the latent variables conditional on observed

variables, the parameters in the model, and additional parameters required for completing

this distribution. (This is the approach taken in maximum likelihood and Bayesian

inference.) Combined with the model, this leads to the joint distribution of outcomes and

latent variables conditional on observed variables and parameters. Since the marginal

distribution of outcomes is the one relevant for the econometrician in this conditional

distribution, there is an integration problem for the latent variables. The second approach

is weaker: it restricts to zero the values of certain population moments involving the

latent and observable variables. (This is the approach taken in generalized method of

moments, which can be implemented with both parametric and nonparametric methods.)

These moments depend upon the parameters (which is why the method works) and the

econometrician must therefore be able to evaluate the moments for any given set of

parameter values. This again requires integration over the latent variables.

Ideally, this integral would be evaluated analytically. Often — indeed, typically — this

is not possible. The alternative is to use numerical methods. Some of these are deter-

ministic, but the rapid growth in the solution of these problems since (roughly) 1990

has been driven more by simulation methods employing pseudo-random numbers gen-

erated by computer hardware and software. This section reviews the most important

these methods and describes their its most significant use in non-Bayesian econometrics,

simulated method of moments. In Bayesian econometrics the integration problem is in-

escapable, the structure of the economic model notwithstanding, because parameters are

treated explicitly as unobservable random variables. Consequently simulation methods

have been central to Bayesian inference in econometrics.
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16.1 Deterministic approximation of integrals

The evaluation of an integral is a problem as old as the calculus itself. In well-catalogued

but limited instances analytical solutions are available: Gradshteyn and Ryzhik (1965)

is a useful classic reference. For integration in one dimension there are several methods

of deterministic approximation, including Newton-Coates (Press et al., 1986, Chapter 4,

Davis and Rabinowitz, 1984, Chapter 2), and Gaussian quadrature (Golub and Welsch,

1969, Judd, 1998, Section 7.2). Gaussian quadrature approximates a smooth function

as the product a polynomial of modest order and a smooth basis function, and then

uses iterative refinements to compute the approximation. It is incorporated in most

mathematical applications software and is used routinely to approximate integrals in one

dimension to many significant figures of accuracy.

Integration in several dimensions by means of deterministic approximation is more

difficult. Practical generic adaptations of Gaussian quadrature are limited to situations in

which the integrand is approximately the product of functions of single variables (Davis

and Rabinowitz,1984, pp. 354-359). Even here the logarithm of computation time is

approximately linear in the number of variables, a phenomenon sometimes dubbed “the

curse of dimensionality.” Successful extensions of quadrature beyond dimensions of four

or five are rare, and these extensions typically require substantial analytical work before

they can be applied successfully.

Low discrepancy methods provide an alternative generic approach to deterministic

approximation of integrals in higher dimensions. The approximation is the average value

of the integrand computed over a well-chosen sequence of points whose configuration

amounts to a sophisticated lattice. Different sequences lead to variants on the approach,

the best known being the Halton (1960) sequence and the Hammersley (1960) sequence.

Niederreiter (1992) reviews these and other variants.

A key property of any method of integral approximation, deterministic or nondeter-

ministic, is that it should provide as a byproduct some indicator of the accuracy of the

approximation. Deterministic methods typically provide upper bounds on the approxi-

mation error, based on worst-case situations. In many situations the actual error is orders

of magnitude less than the upper bound, and as a consequence attaining desired error

tolerances may appear to be impractical whereas in fact these tolerances can easily be

attained. Geweke (1996, Section 2.3) provides an example.

16.2 Simulation approximation of integrals

The structure of integration problems encountered in econometrics makes them often

more amenable to attack by simulation methods than by nondeterministic methods. Two

characteristics are key. First, integrals in many dimensions are required. In some situ-
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ations the number is proportional to the size of the sample, and while the structure of

the problem may lead to decomposition in terms of many integrals of smaller dimension,

the resulting structure and dimension are still unsuitable for deterministic methods. The

second characteristic is that the integration problem usually arises as the need to compute

the expected value of a function of a random vector with a given probability distribution

P :

I =

Z
S

g(x)p(x)dx, (1)

where p is the density corresponding to P , g is the function, x is the random vector, and

I is the number to be approximated. The probability distribution P is then the point of

departure for the simulation.

For many distributions there are reliable algorithms, implemented in widely available

mathematical applications software, for simulation of random vectors x. This yields a

sample
©
g
¡
x(m)

¢ª
(m = 1, . . . ,M) whose arithmetic mean provides an approximation of

I, and for which a central limit theorem provides an assessment of the accuracy of the

approximation in the usual way. (This requires the existence of the first two moments

of g, which must be shown analytically.) This approach is most useful when p is simple

(so that direct simulation of x is possible) but the structure of g precludes analytical

evaluation of I.

This simple approach does not suffice for the integration problem as it typically arises

in econometrics. A leading example is the multinomial probit (MNP) model with J

discrete choices. For each individual i the utility of the last choice uiJ is normalized to

be zero, and the utilities of the first J − 1 choices are given by the vector

ui ∼ N(Xiβ,Σ), (2)

where X is a matrix of characteristics of individual i, including the prices and other

properties of the choices presented to that individual, and β and Σ are structural pa-

rameters of the model. If the j’th element of ui is positive and larger than all the

other elements of ui the individual makes choice j, and if all elements of u are nega-

tive the individual makes choice J . The probability that individual i makes choice j

is the integral of the (n − 1)-variate normal distribution (1) taken over the subspace
{ui : uik ≤ uij∀k = 1, . . . , n}. This computation is essential in evaluating the likelihood
function, and it has no analytical solution. (For discussion and review see Sandor and

Andras (2004).)

Several generic simulation methods have been used for the problem (1) in economet-

rics. One of the oldest is acceptance sampling, a simple variant of which is described in

von Neumann (1951) and Hammersley and Handscomb (1964). Suppose it is possible to

draw from the distribution Q with density q, and the ratio p(x)/q(x) is bounded above
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by the known constant a. If x is simulated successively from Q but accepted and taken

into the sample with probability p(x)/ [aq(x)], then the resulting sample is independently

distributed with the identical distribution P . Proofs and further discussion are widely

available, e.g. Press et al. (1992, Section 7.4), Bratley et al. (1987, Section 5.2.5), and

Geweke (2005, Section 4.2.1). The unconditional probability of accepting draws from Q

is 1/a. If a is too large the method is impractical, but when acceptance sampling is prac-

tical it provides draws directly from P . This is an important component of many of the

algorithms underlying the “black box” generation of random variables in mathematical

applications software.

Alternatively, in the same situation all of the draws from Q are retained and taken

into a stratified sample in which the weight w
¡
x(m)

¢
= p

¡
x(m)

¢
/q
¡
x(m)

¢
is associated

with the m’th draw. The approximation of I in (1) is then the weighted average of

the terms g
¡
x(m)

¢
. This approach dates at least to Hammersley and Handscomb (1964,

Section 5.4), and was introduced to econometrics by Kloek and van Dijk (1978). The

procedure is more general than acceptance sampling in that a known upper bound of w is

not required, but if in fact a is large then the weights will display large variation and the

approximation will be poor. This is clear in the central limit theorem for the accuracy of

approximation provided in Geweke (1989a), which as a practical matter requires that a

finite upper bound on w be established analytically. This is a key limitation of acceptance

sampling and importance sampling.

Markov chain Monte Carlo (MCMC) methods provide an entirely different approach

to the solution of the integration problem (1). These procedures construct a Markov

process of the form

x(m) ∼ p
³
x|x(m−1)

´
(3)

in such a way that

M−1PM
m=1 g(x

(m))

converges (almost surely) to I. These methods have a history in mathematical physics

dating back to the algorithm of Metropolis et al. (1953). Hastings (1970) focused on

statistical problems and extended the method to its present form known as the Hastings-

Metropolis (HM) algorithm. HM draws a candidate x∗ from a convenient distribution in-

dexed by x(m−1). It sets x(m) = x with probability α
¡
x(m−1),x(m)

¢
and sets x(m) = x(m)−1

otherwise, the function α being chosen so that the process (3) defined in this way has the

desired convergence property. Chib and Greenberg (1995) provide a detailed introduction

to HM and its application in econometrics. Tierney (1994) provides a succinct summary

of the relevant continuous state space Markov chain theory bearing on the convergence

of MCMC.

A version of the HM algorithm particularly suited to image reconstruction and prob-

lems in spatial statistics, known as the Gibbs sampling (GS) algorithm, was introduced
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by Geman and Geman (1984). This was subsequently shown to have great potential for

Bayesian computation by Gelfand and Smith (1990). In GS the vector x is subdivided

into component vectors, x0 = (x01, ...,x
0
B), in such a way that simulation from the condi-

tional distribution of each xj implied by p(x) in (1) is feasible. This method has proven

very advantageous in econometrics generally, and it revolutionized Bayesian approaches

in particular beginning about 1990.

By the turn of the century HM and GS algorithms were standard tools for likelihood-

based econometrics. Their structure and strategic importance for Bayesian econometrics

were conveyed in surveys by Geweke (1999) and Chib (2001), as well as in a number

of textbooks, including Koop (2003), Lancaster (2004), Geweke (2005) and Rossi et al.

(2005). Central limit theorems can be used to assess the quality of approximations as

described in Tierney (1994) and Geweke (2005).

16.3 Simulation Methods in non-Bayesian Econometrics

Generalized method of moments estimation has been a staple of non-Bayesian econo-

metrics since its introduction by Hansen (1982). In an econometric model with k × 1
parameter vector θ economic theory provides the set of sample moment restrictions

h(θ) =

Z
S

g(x)p(x|θ,y)dx = 0, (4)

where g(x) is a p×1 vector and y denotes the data including instrumental variables. An
example is the MNP model (2). If the observed choices are coded by the variables dij = 1

if individual i makes choice j and dij = 0 otherwise, then the expected value of dij is the

probability that individual i makes choice j, leading to restrictions of the form (4).

The generalized method of moments estimator minimizes the criterion function h(θ)0Wh(θ)

given a suitably chosen weighting matrixW. If the requisite integrals can be evaluated

analytically, p ≥ k, and other conditions provided in Hansen (1982) are satisfied, then

there is a well-developed asymptotic theory of inference for the parameters that by 1990

was a staple of graduate econometrics textbooks. If for one or more elements of h the

integral cannot be evaluated analytically, then for alternative values of it is often possible

to approximate the integral appearing in (4) by simulation. This is the situation in the

MNP model.

The substitution of a simulation approximation

M−1PM
m=1 g(x

(m))

for the integral in (4) defines the method of simulated moments (MSM) introduced by

McFadden (1989) and Pakes and Pollard (1989), who were concerned with the MNP

model (2) in particular and the estimation of discrete response models using cross-section
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data in general. Later the method was extended to time series models by Lee and Ingram

(1991) and Duffie and Singleton (1993). The asymptotic distribution theory established

in this literature requires that the number of simulationsM increase at least as rapidly as

the square of the number of observations. The practical import of this apparently severe

requirement is that applied econometric work must establish that changes in Mmust have

little impact on the results; Geweke, Keane and Runkle (1994, 1997) provide examples

for MNP. This literature also shows that in general the impact of using direct simulation,

as opposed to analytical evaluation of the integral, is to increase the asymptotic variance

of the GMM estimator of θ by the factor , M−1 typically trivial in view of the number of

simulations required. Substantial surveys of the details of MSM and leading applications

of the method can be found in Gourieroux and Monfort (1993, 1996), Stern (1997) and

Liesenfeld and Breitung (1999).

The simulation approximation, unlike the (unavailable) analytical evaluation of the

integral in (4) can lead to a criterion function that is discontinuous in θ. This happens in

the MNP model using the obvious simulation scheme in which the choice probabilities are

replaced by their proportions in the M simulations, as proposed by Lerman and Manski

(1981). The asymptotic theory developed by McFadden (1989) and Pakes and Pollard

(1989) copes with this possibility, and led McFadden (1989) to used kernel weighting to

smooth the probabilities. The most widely used method for smoothing probabilities in

the MNP model is the GHK simulator of Geweke (1989b), Hajivassiliou et al. (1991) and

Keane (1990); a full description is provided in Geweke and Keane (2001), and comparisons

of alternative methods are given in Hajivassiliou et al. (1996) and Sandor and Andras

(2004).

Maximum likelihood estimation of θ can lead to first-order conditions of the form (4),

and thus becomes a special case of MSM. This context highlights some of the complica-

tions introduced by simulation. While the simulation approximation of (1) is unbiased

the corresponding expression enters the log likelihood function and its derivatives non-

linearly. Thus for any finite number of simulations M , the evaluation of the first order

conditions is biased in general. IncreasingM at a rate faster than the square of the num-

ber of observations eliminates the squared bias relative to the variance of the estimator;

Lee (1995) provides further details.

16.4 Simulation Methods in Bayesian Econometrics

Bayesian econometrics places a common probability distribution on random variables

that can be observed (data) and unobservable parameters and latent variables. Inference

proceeds using the distribution of these unobservable entities conditional on the data —

the posterior distribution. Results are typically expressed in terms of the expectations of
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parameters or functions of parameters, expectations taken with respect to the posterior

distribution. Thus whereas integration problems are application-specific in non-Bayesian

econometrics, they are endemic in Bayesian econometrics.

The development of modern simulation methods had a correspondingly greater impact

in Bayesian than in non-Bayesian econometrics. Since 1990 simulation-based Bayesian

methods have become practical in the context of most econometric models. The availabil-

ity of this tool has been influential in the modeling approach taken in addressing applied

econometric problems.

The MNP model (2) illustrates the interaction in latent variable models. Given a

sample of n individuals, the (J − 1) × 1 latent utility vectors u1, ...,un are regarded
explicitly as n(J−1) unknowns to be inferred along with the unknown parameters β and
Σ. Conditional on these parameters and the data, the vectors u1, ...,un are independently

distributed. The distribution of ui is (2) truncated to an orthant that depends on the

observed choice j : if j < J then uik < uij for all k 6= j and uij > 0, whereas for choice

J , uik < 0 for all k. The distribution of each uik, conditional on all of the other elements

of ui, is truncated univariate normal, and it is relatively straightforward to simulate

from this distribution. (Geweke (1991) provides details on sampling from a multivariate

normal distribution subject to linear restrictions.) Consequently GS provides a practical

algorithm for drawing from the distribution of the latent utility vectors conditional on

the parameters.

Conditional on the latent utility vectors — that is, regarding them as observed — the

MNP model is a seemingly unrelated regressions model and the approach taken by Percy

(1992) applies. Given conjugate priors the posterior distribution of β, conditional on Σ

and utilities, is Gaussian, and the conditional distribution of Σ, conditional on β and

utilities, is inverted Wishart. Since GS provides the joint distribution of parameters and

latent utilities, the posterior mean of any function of these can be approximated as the

sample mean. This approach and the suitability of GS for latent variable models were

first recognized by Chib (1992). Similar approaches in other latent variable models in

include McCulloch and Tsay (1994), Chib and Greenberg (1998), McCulloch, Polson and

Rossi (2000) and Geweke and Keane (2001).

The Bayesian approach with GS sidesteps the evaluation of the likelihood function,

and of any moments in which the approximation is biased given a finite number of sim-

ulations, two technical issues that are prominent in MSM. On the other hand, as in all

MCMC algorithms, there may be sensitivity to the initial values of parameters and latent

variables in the Markov chain, and substantial serial correlation in the chain will reduce

the accuracy of the simulation approximation. Geweke (1992, 2005) and Tierney (1994)

discuss these issues.
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17 Financial Econometrics

Attempts at testing of the efficient market hypothesis (EMH) provided the impetus for

the application of time series econometric methods in finance. The EMH was built on

the pioneering work of Bachelier (1900) and evolved in the 1960’s from the random walk

theory of asset prices advanced by Samuelson (1965). By the early 1970’s a consensus

had emerged among financial economists suggesting that stock prices could be well ap-

proximated by a random walk model and that changes in stock returns were basically

unpredictable. Fama (1970) provides an early, definitive statement of this position. He

distinguished between different forms of the EMH: The “Weak" form that asserts all price

information is fully reflected in asset prices; the “Semi-strong" form that requires asset

price changes to fully reflect all publicly available information and not only past prices;

and the “Strong" form that postulates that prices fully reflect information even if some

investor or group of investors have monopolistic access to some information. Fama re-

garded the strong form version of the EMH as a benchmark against which the other forms

of market efficiencies are to be judged. With respect to the weak form version he con-

cluded that the test results strongly support the hypothesis, and considered the various

departures documented as economically unimportant. He reached a similar conclusion

with respect to the semi-strong version of the hypothesis. Evidence on the semi-strong

form of the EMH was revisited by Fama (1991). By then it was clear that the distinction

between the weak and the semi-strong forms of the EMH was redundant. The random

walk model could not be maintained either - in view of more recent studies, in particular

that of Lo and MacKinlay (1988).

This observation led to a series of empirical studies of stock return predictability over

different horizons. It was shown that stock returns can be predicted to some degree

by means of interest rates, dividend yields and a variety of macroeconomic variables

exhibiting clear business cycle variations. See, for example, Fama and French (1989),

Kandel and Stambaugh (1996), and Pesaran and Timmermann (1995) on predictability

of equity returns in the US; and Clare, Thomas and Wickens (1994), and Pesaran and

Timmermann (2000) on equity return predictability in the UK.

Although, it is now generally acknowledged that stock returns could be predictable,

there are serious difficulties in interpreting the outcomes of market efficiency tests. Pre-

dictability could be due to a number of different factors such as incomplete learning,

expectations heterogeniety, time variations in risk premia, tranaction costs, or specifica-

tion searches often carried out in pursuit of predictability. In general, it is not possible to

distinquish between the different factors that might lie behind observed predictability of

asset returns. As noted by Fama (1991) the test of the EMH involves a joint hypothesis,

and can be tested only jointly with an assumed model of market equilibrium. This is not,
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however, a problem that is unique to financial econometrics; almost all areas of empirical

economics are subject to the joint hypotheses problem. The concept of market efficiency

is still deemed to be useful as it provides a benchmark and its use in finance has led to

significant insights.

Important advances have been made in the development of equilibrium asset pricing

models, econometric modelling of asset return volatility (Engle, 1982, Bollerslev, 1986),

analysis of high frequency intraday data, and market microstructures. Some of these

developments are reviewed in Campbell, Lo and MacKinlay (1997), Cochrane (2005),

Shephard (2005), and McAleer and Medeiros (2006). Future advances in financial econo-

metrics are likely to focus on heterogenity, learning and model uncertainty, real time

analysis, and further integration with macroeconometrics. Finance is particularly suited

to the application of techniques developed for real time econometrics. (Pesaran and

Timmermann, 2005a).

18 Appraisals and Future Prospects

has come a long way over a relatively short period. Important advances have been made in

the compilation of economic data and in the development of concepts, theories and tools

for the construction and evaluation of a wide variety of econometric models. Applications

of econometric methods can be found in almost every field of economics. Econometric

models have been used extensively by government agencies, international organizations

and commercial enterprises. Macroeconometric models of differing complexity and size

have been constructed for almost every country in the world. Both in theory and prac-

tice econometrics has already gone well beyond what its founders envisaged. Time and

experience, however, have brought out a number of difficulties that were not apparent at

the start.

Econometrics emerged in the 1930s and 1940s in a climate of optimism, in the belief

that economic theory could be relied on to identify most, if not all, of the important

factors involved in modelling economic reality, and that methods of classical statistical

inference could be adapted readily for the purpose of giving empirical content to the re-

ceived economic theory. This early view of the interaction of theory and measurement in

econometrics, however, proved rather illusory. Economic theory is invariably formulated

with ceteris paribus clauses, and involves unobservable latent variables and general func-

tional forms; it has little to say about adjustment processes, lag lengths and other factors

mediating the relationship between the theoretical specification (even if correct) and ob-

servables. Even in the choice of variables to be included in econometric relations, the role

of economic theory is far more limited than was at first recognized. In a Walrasian gen-

eral equilibrium model, for example, where everything depends on everything else, there
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is very little scope for a priori exclusion of variables from equations in an econometric

model. There are also institutional features and accounting conventions that have to be

allowed for in econometric models but which are either ignored or are only partially dealt

with at the theoretical level. All this means that the specification of econometric mod-

els inevitably involves important auxiliary assumptions about functional forms, dynamic

specifications, latent variables, etc. with respect to which economic theory is silent or

gives only an incomplete guide.

The recognition that economic theory on its own cannot be expected to provide a

complete model specification has important consequences for testing and evaluation of

economic theories, for forecasting and real time decision making. The incompleteness of

economic theories makes the task of testing them a formidable undertaking. In general it

will not be possible to say whether the results of the statistical tests have a bearing on the

economic theory or the auxiliary assumptions. This ambiguity in testing theories, known

as the Duhem-Quine thesis, is not confined to econometrics and arises whenever theories

are conjunctions of hypotheses (on this, see for example Cross, 1982). The problem

is, however, especially serious in econometrics because theory is far less developed in

economics than it is in the natural sciences. There are, of course, other difficulties that

surround the use of econometric methods for the purpose of testing economic theories. As

a rule economic statistics are not the results of designed experiments, but are obtained as

by-products of business and government activities often with legal rather than economic

considerations in mind. The statistical methods available are generally suitable for large

samples while the economic data typically have a rather limited coverage. There are also

problems of aggregation over time, commodities and individuals that further complicate

the testing of economic theories that are micro-based.

Econometric theory and practice seek to provide information required for informed

decision-making in public and private economic policy. This process is limited not only

by the adequacy of econometrics, but also by the development of economic theory and

the adequacy of data and other information. Effective progress, in the future as in the

past, will come from simultaneous improvements in econometrics, economic theory, and

data. Research that specifically addresses the effectiveness of the interface between any

two of these three in improving policy — to say nothing of all of them — necessarily

transcends traditional subdisciplinary boundaries within economics. But it is precisely

these combinations that hold the greatest promise for the social contribution of academic

economics.
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